An autonomous cooperative system of multi-AUV for underwater targets detection and localization

计算机科学 水下 人工智能 实时计算 分割 恒虚警率 计算机视觉 可扩展性 声纳 假警报 海洋学 地质学 数据库
作者
Qi Wang,Bo He,Yixiao Zhang,Fei Yu,Xiaochao Huang,Rong Yang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:121: 105907-105907 被引量:31
标识
DOI:10.1016/j.engappai.2023.105907
摘要

This paper proposes a cooperative online target detection methodology by multiple autonomous underwater vehicles (Multi-AUV) equipped with the side-scan sonar (SSS) sensor for real-time, accurate, and efficient underwater target detection and positioning in unknown environments. Due to the existence of unfavorable factors such as severe noises and geometric deformation of SSS images, this study incorporates the prior-based threshold segmentation with multi-scale cascaded networks (MSCNet) to reduce the high false alarm rate significantly. Specifically, to the real-time requirements of the AUVs computational platform, this study proposes the sequentially dual-branch lightweight block (LWBlock) as a baseline to obtain dense feature maps, which provide a good trade-off between accuracy and speed. Meanwhile, this study establishes the comprehensive correction model, which obtains the accurate target positioning information fusing with the predicted results. Furthermore, according to the target information provided by the automatic target recognition (ATR) system, the data-driven behavior-based (DDBB) path re-planning algorithm is performed that endows each AUV to scan above the interest target autonomously and in detail by designed maneuver behavior. Simulation and actual sea trial experimental results show that the proposed method outperforms other state-of-the-art algorithms, and achieves the recognition accuracy of 92.16%, inference speed of 2.45 s, and obtained the best FPR indicator in three SSS targets of 2.54% (metal ball),1.96% (seabed rock) and 1.03% (metal rod), respectively. At the same time, the proposed algorithm can improve detection efficiency by at least 40% compared with a single AUV, which can be widely used in marine mission exploration and resource deployment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
JamesPei应助小白采纳,获得10
4秒前
huagu722发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
6秒前
7秒前
ck完成签到 ,获得积分20
7秒前
9秒前
liuyepiao完成签到,获得积分10
10秒前
EurekaOvo发布了新的文献求助10
10秒前
李爱国应助zhou国兵采纳,获得10
11秒前
YangZhang发布了新的文献求助10
11秒前
12秒前
zwj发布了新的文献求助10
14秒前
思源应助yuanjie采纳,获得10
14秒前
留猪发布了新的文献求助10
14秒前
14秒前
毛毛发布了新的文献求助10
17秒前
Wangjingxuan发布了新的文献求助10
19秒前
qzs完成签到,获得积分10
21秒前
22秒前
赘婿应助SICHEN采纳,获得10
23秒前
Jrssion完成签到,获得积分10
24秒前
24秒前
闫123完成签到,获得积分10
25秒前
喜东东发布了新的文献求助30
28秒前
32秒前
xxs应助科研通管家采纳,获得10
33秒前
33秒前
完美世界应助科研通管家采纳,获得10
33秒前
NexusExplorer应助科研通管家采纳,获得10
33秒前
11完成签到,获得积分10
33秒前
34秒前
科研通AI6.2应助kunpenezy采纳,获得10
35秒前
科目三应助千千沐采纳,获得10
37秒前
所所应助yue采纳,获得10
38秒前
冷傲的如柏完成签到,获得积分10
39秒前
走走发布了新的文献求助10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Key Thinkers in Industrial and Organizational Psychology 500
A positive solution of a nonlinear elliptic equation in $\Bbb R^N$ with $G$-symmetry 200
Eine Fährtenschicht im mittelfränkischen Blasensandstein 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5869551
求助须知:如何正确求助?哪些是违规求助? 6453169
关于积分的说明 15661332
捐赠科研通 4985385
什么是DOI,文献DOI怎么找? 2688390
邀请新用户注册赠送积分活动 1630820
关于科研通互助平台的介绍 1588927