Representation Learning and Reinforcement Learning for Dynamic Complex Motion Planning System

强化学习 计算机科学 趋同(经济学) 编码(内存) 运动规划 代表(政治) 运动(物理) 人工智能 编码(集合论) 状态空间 机器学习 离线学习 算法 机器人 在线学习 集合(抽象数据类型) 数学 统计 政治 万维网 政治学 法学 经济 程序设计语言 经济增长
作者
Chengmin Zhou,Bingding Huang,Pasi Fränti
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (8): 11049-11063 被引量:5
标识
DOI:10.1109/tnnls.2023.3247160
摘要

Indoor motion planning challenges researchers because of the high density and unpredictability of moving obstacles. Classical algorithms work well in the case of static obstacles but suffer from collisions in the case of dense and dynamic obstacles. Recent reinforcement learning (RL) algorithms provide safe solutions for multiagent robotic motion planning systems. However, these algorithms face challenges in convergence: slow convergence speed and suboptimal converged result. Inspired by RL and representation learning, we introduced the ALN-DSAC: a hybrid motion planning algorithm where attention-based long short-term memory (LSTM) and novel data replay combine with discrete soft actor–critic (SAC). First, we implemented a discrete SAC algorithm, which is the SAC in the setting of discrete action space. Second, we optimized existing distance-based LSTM encoding by attention-based encoding to improve the data quality. Third, we introduced a novel data replay method by combining the online learning and offline learning to improve the efficacy of data replay. The convergence of our ALN-DSAC outperforms that of the trainable state of the arts. Evaluations demonstrate that our algorithm achieves nearly 100% success with less time to reach the goal in motion planning tasks when compared to the state of the arts. The test code is available at https://github.com/CHUENGMINCHOU/ALN-DSAC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SnowHee发布了新的文献求助20
刚刚
xr完成签到,获得积分10
刚刚
1秒前
zqc完成签到,获得积分20
1秒前
小鱼儿发布了新的文献求助10
2秒前
2秒前
李建芳完成签到,获得积分10
2秒前
Akim应助科研通管家采纳,获得10
3秒前
wxyshare应助科研通管家采纳,获得10
3秒前
3秒前
大模型应助科研通管家采纳,获得30
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得30
3秒前
文献海里爬给文献海里爬的求助进行了留言
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
赘婿应助科研通管家采纳,获得10
5秒前
5秒前
陶醉清完成签到,获得积分10
5秒前
CipherSage应助jm采纳,获得10
5秒前
李洛克发布了新的文献求助10
6秒前
内敛诚C完成签到 ,获得积分10
7秒前
7秒前
酷波er应助一一采纳,获得10
7秒前
8秒前
8秒前
8秒前
麦冬发布了新的文献求助10
9秒前
9秒前
FJM发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5473258
求助须知:如何正确求助?哪些是违规求助? 4575461
关于积分的说明 14352959
捐赠科研通 4503014
什么是DOI,文献DOI怎么找? 2467404
邀请新用户注册赠送积分活动 1455315
关于科研通互助平台的介绍 1429322