Run, Don't Walk: Chasing Higher FLOPS for Faster Neural Networks

失败 计算机科学 并行计算 人工神经网络 人工智能
作者
Jierun Chen,Shiu-hong Kao,Hao He,Weipeng Zhuo,Wen Song,Chul‐Ho Lee,S.-H. Gary Chan
出处
期刊:Cornell University - arXiv 被引量:18
标识
DOI:10.48550/arxiv.2303.03667
摘要

To design fast neural networks, many works have been focusing on reducing the number of floating-point operations (FLOPs). We observe that such reduction in FLOPs, however, does not necessarily lead to a similar level of reduction in latency. This mainly stems from inefficiently low floating-point operations per second (FLOPS). To achieve faster networks, we revisit popular operators and demonstrate that such low FLOPS is mainly due to frequent memory access of the operators, especially the depthwise convolution. We hence propose a novel partial convolution (PConv) that extracts spatial features more efficiently, by cutting down redundant computation and memory access simultaneously. Building upon our PConv, we further propose FasterNet, a new family of neural networks, which attains substantially higher running speed than others on a wide range of devices, without compromising on accuracy for various vision tasks. For example, on ImageNet-1k, our tiny FasterNet-T0 is $2.8\times$, $3.3\times$, and $2.4\times$ faster than MobileViT-XXS on GPU, CPU, and ARM processors, respectively, while being $2.9\%$ more accurate. Our large FasterNet-L achieves impressive $83.5\%$ top-1 accuracy, on par with the emerging Swin-B, while having $36\%$ higher inference throughput on GPU, as well as saving $37\%$ compute time on CPU. Code is available at \url{https://github.com/JierunChen/FasterNet}.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵小熊发布了新的文献求助10
1秒前
小瑄完成签到 ,获得积分10
1秒前
彩w完成签到,获得积分10
2秒前
Oculus发布了新的文献求助10
2秒前
3秒前
Rjy发布了新的文献求助10
3秒前
FashionBoy应助阮楷瑞采纳,获得10
3秒前
权志龙完成签到,获得积分10
3秒前
3秒前
打打应助oio采纳,获得10
4秒前
wzc发布了新的文献求助10
4秒前
Jay关注了科研通微信公众号
4秒前
州府十三发布了新的文献求助10
6秒前
打打应助算不尽采纳,获得10
6秒前
酷波er应助harden采纳,获得10
6秒前
6秒前
6秒前
7秒前
彩w发布了新的文献求助20
7秒前
ANN.LIU完成签到,获得积分10
7秒前
LXinY完成签到 ,获得积分10
8秒前
深情安青应助风趣的老太采纳,获得10
8秒前
9秒前
EBA完成签到,获得积分10
9秒前
手都杏仁发布了新的文献求助10
10秒前
英俊的铭应助QAQ采纳,获得10
10秒前
叶明杰完成签到,获得积分10
10秒前
科研痛啊痛2完成签到,获得积分10
11秒前
11秒前
科研通AI5应助麦当劳薯条采纳,获得10
12秒前
12秒前
Tethys发布了新的文献求助10
13秒前
我是老大应助无语的稀采纳,获得10
13秒前
13秒前
无花果应助momo123采纳,获得10
14秒前
Jiling发布了新的文献求助10
14秒前
14秒前
15秒前
msw完成签到,获得积分10
15秒前
Owen应助壮观的若之采纳,获得10
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786497
求助须知:如何正确求助?哪些是违规求助? 3332246
关于积分的说明 10254811
捐赠科研通 3047627
什么是DOI,文献DOI怎么找? 1672635
邀请新用户注册赠送积分活动 801445
科研通“疑难数据库(出版商)”最低求助积分说明 760204