Run, Don't Walk: Chasing Higher FLOPS for Faster Neural Networks

失败 计算机科学 并行计算 人工神经网络 人工智能
作者
Jierun Chen,Shiu-hong Kao,Hao He,Weipeng Zhuo,Wen Song,Chul‐Ho Lee,S.-H. Gary Chan
出处
期刊:Cornell University - arXiv 被引量:18
标识
DOI:10.48550/arxiv.2303.03667
摘要

To design fast neural networks, many works have been focusing on reducing the number of floating-point operations (FLOPs). We observe that such reduction in FLOPs, however, does not necessarily lead to a similar level of reduction in latency. This mainly stems from inefficiently low floating-point operations per second (FLOPS). To achieve faster networks, we revisit popular operators and demonstrate that such low FLOPS is mainly due to frequent memory access of the operators, especially the depthwise convolution. We hence propose a novel partial convolution (PConv) that extracts spatial features more efficiently, by cutting down redundant computation and memory access simultaneously. Building upon our PConv, we further propose FasterNet, a new family of neural networks, which attains substantially higher running speed than others on a wide range of devices, without compromising on accuracy for various vision tasks. For example, on ImageNet-1k, our tiny FasterNet-T0 is $2.8\times$, $3.3\times$, and $2.4\times$ faster than MobileViT-XXS on GPU, CPU, and ARM processors, respectively, while being $2.9\%$ more accurate. Our large FasterNet-L achieves impressive $83.5\%$ top-1 accuracy, on par with the emerging Swin-B, while having $36\%$ higher inference throughput on GPU, as well as saving $37\%$ compute time on CPU. Code is available at \url{https://github.com/JierunChen/FasterNet}.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拆拆拆完成签到 ,获得积分10
2秒前
lily336699发布了新的文献求助10
3秒前
天天快乐应助风禾尽起采纳,获得10
4秒前
totoo2021应助小红采纳,获得10
5秒前
在水一方应助fim461847采纳,获得10
5秒前
7秒前
江河日山完成签到,获得积分10
7秒前
9秒前
9秒前
小羊同学发布了新的文献求助10
10秒前
doudou发布了新的文献求助10
13秒前
13秒前
17秒前
18秒前
落后新晴发布了新的文献求助10
18秒前
奥一奥发布了新的文献求助10
21秒前
21秒前
21秒前
俭朴火车完成签到 ,获得积分10
22秒前
英姑应助章建清采纳,获得10
22秒前
22秒前
古月发布了新的文献求助10
22秒前
桃桃乌龙完成签到,获得积分10
23秒前
脑洞疼应助doudou采纳,获得10
24秒前
PHOTONS发布了新的文献求助10
27秒前
27秒前
ritanon发布了新的文献求助10
28秒前
桃桃乌龙发布了新的文献求助30
28秒前
30秒前
31秒前
yan发布了新的文献求助10
33秒前
33秒前
香蕉觅云应助奥一奥采纳,获得10
33秒前
俭朴火车发布了新的文献求助10
34秒前
丽丽完成签到 ,获得积分10
34秒前
快乐滑板应助李嘉午采纳,获得10
35秒前
orixero应助古月采纳,获得10
35秒前
dDD发布了新的文献求助30
37秒前
tjcu完成签到,获得积分20
37秒前
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Psychology and Work Today 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5832379
求助须知:如何正确求助?哪些是违规求助? 6071689
关于积分的说明 15585235
捐赠科研通 4951529
什么是DOI,文献DOI怎么找? 2668119
邀请新用户注册赠送积分活动 1613634
关于科研通互助平台的介绍 1568562