Aligning Multi-Sequence CMR Towards Fully Automated Myocardial Pathology Segmentation

分割 计算机科学 人工智能 磁共振成像 心肌梗塞 图像分割 心脏磁共振 模式识别(心理学) 计算机视觉 医学 放射科 心脏病学
作者
Wangbin Ding,Lei Li,Junyi Qiu,Sihan Wang,Liqin Huang,Yinyin Chen,Shan Yang,Xiahai Zhuang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (12): 3474-3486 被引量:18
标识
DOI:10.1109/tmi.2023.3288046
摘要

Myocardial pathology segmentation (MyoPS) is critical for the risk stratification and treatment planning of myocardial infarction (MI). Multi-sequence cardiac magnetic resonance (MS-CMR) images can provide valuable information. For instance, balanced steady-state free precession cine sequences present clear anatomical boundaries, while late gadolinium enhancement and T2-weighted CMR sequences visualize myocardial scar and edema of MI, respectively. Existing methods usually fuse anatomical and pathological information from different CMR sequences for MyoPS, but assume that these images have been spatially aligned. However, MS-CMR images are usually unaligned due to the respiratory motions in clinical practices, which poses additional challenges for MyoPS. This work presents an automatic MyoPS framework for unaligned MS-CMR images. Specifically, we design a combined computing model for simultaneous image registration and information fusion, which aggregates multi-sequence features into a common space to extract anatomical structures (i.e., myocardium). Consequently, we can highlight the informative regions in the common space via the extracted myocardium to improve MyoPS performance, considering the spatial relationship between myocardial pathologies and myocardium. Experiments on a private MS-CMR dataset and a public dataset from the MYOPS2020 challenge show that our framework could achieve promising performance for fully automatic MyoPS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9202211125发布了新的文献求助10
刚刚
刚刚
刚刚
JamesPei应助夏侯绮山采纳,获得10
2秒前
hygge完成签到 ,获得积分10
4秒前
4秒前
4秒前
4秒前
机智翠风发布了新的文献求助10
5秒前
6秒前
刘超锋发布了新的文献求助10
7秒前
狐狸毛毛完成签到,获得积分10
7秒前
燕儿发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
芋泥发布了新的文献求助10
8秒前
彭于晏应助Marshall采纳,获得10
9秒前
9秒前
11秒前
11秒前
zsy发布了新的文献求助10
11秒前
人间发布了新的文献求助10
11秒前
11秒前
13秒前
廖天佑完成签到,获得积分0
15秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
机智翠风发布了新的文献求助10
17秒前
17秒前
17秒前
善学以致用应助wyx2091采纳,获得10
18秒前
18秒前
19秒前
19秒前
Hello应助一孙采纳,获得10
19秒前
仄言发布了新的文献求助50
20秒前
21秒前
22秒前
22秒前
鑫博发布了新的文献求助10
22秒前
乐在研途发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5819686
求助须知:如何正确求助?哪些是违规求助? 5961506
关于积分的说明 15553450
捐赠科研通 4941540
什么是DOI,文献DOI怎么找? 2661555
邀请新用户注册赠送积分活动 1607856
关于科研通互助平台的介绍 1562799