Evaluation of Regularization-based Continual Learning Approaches: Application to HAR

计算机科学 正规化(语言学) 机器学习 人工智能 领域(数学分析) 领域(数学) 数据科学 数学 数学分析 纯数学
作者
Bonpagna Kann,Sandra Castellanos-Paez,Philippe Lalanda
标识
DOI:10.1109/percomworkshops56833.2023.10150281
摘要

Pervasive computing allows the provision of services in many important areas, including the relevant and dynamic field of health and well-being. In this domain, Human Activity Recognition (HAR) has gained a lot of attention in recent years. Current solutions rely on Machine Learning (ML) models and achieve impressive results. However, the evolution of these models remains difficult, as long as a complete re-training is not performed. To overcome this problem, the concept of Continual Learning is very promising today and, more particularly, the techniques based on regularization. These techniques are particularly interesting for their simplicity and their low cost. Initial studies have been conducted and have shown promising outcomes. However, they remain very specific and difficult to compare. In this paper, we provide a comprehensive comparison of three regularization-based methods that we adapted to the HAR domain, highlighting their strengths and limitations. Our experiments were conducted on the UCI HAR dataset and the results showed that no single technique outperformed all others in all scenarios considered.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助yinhe028采纳,获得10
刚刚
刚刚
李健应助SEM快速测试采纳,获得10
1秒前
2秒前
2秒前
tjl发布了新的文献求助10
2秒前
XXXX发布了新的文献求助10
2秒前
5秒前
欧阳铭发布了新的文献求助10
5秒前
胡庆兰完成签到,获得积分20
5秒前
Weiyu发布了新的文献求助20
6秒前
无花果应助小飞采纳,获得10
6秒前
6秒前
simey发布了新的文献求助10
7秒前
7秒前
10秒前
10秒前
10秒前
11秒前
胡庆兰发布了新的文献求助50
12秒前
圆芝麻发布了新的文献求助30
13秒前
15秒前
15秒前
ying发布了新的文献求助10
15秒前
16秒前
舒心的黑猫完成签到,获得积分10
16秒前
manggo发布了新的文献求助10
17秒前
小二郎应助阿拉光采纳,获得30
17秒前
合适芹菜发布了新的文献求助10
18秒前
小二郎应助半夏采纳,获得10
18秒前
852应助小章采纳,获得10
19秒前
Foremelon发布了新的文献求助20
20秒前
咯咚发布了新的文献求助10
21秒前
21秒前
21秒前
捡破烂的完成签到 ,获得积分10
23秒前
ying完成签到,获得积分10
23秒前
小平发布了新的文献求助10
23秒前
25秒前
summer发布了新的文献求助10
25秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Dynamic Programming and Optimal Control 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830011
求助须知:如何正确求助?哪些是违规求助? 3372520
关于积分的说明 10473113
捐赠科研通 3092110
什么是DOI,文献DOI怎么找? 1701802
邀请新用户注册赠送积分活动 818638
科研通“疑难数据库(出版商)”最低求助积分说明 770986