Synchroextracting frequency synchronous chirplet transform for fault diagnosis of rotating machinery under varying speed conditions

啁啾声 瞬时相位 振动 断层(地质) 时频分析 信号(编程语言) 计算机科学 噪音(视频) 控制理论(社会学) 工程类 人工智能 声学 电信 物理 雷达 激光器 控制(管理) 地震学 光学 图像(数学) 程序设计语言 地质学
作者
Chuancang Ding,Weiguo Huang,Changqing Shen,Xingxing Jiang,Jun Wang,Zhongkui Zhu
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:23 (3): 1403-1422 被引量:22
标识
DOI:10.1177/14759217231181308
摘要

The fault diagnosis of rotating machine is essential to maintain its operational safety and avoid catastrophic accidents. The vibration signals collected from the varying speed rotating machinery are non-stationary, and time–frequency analysis (TFA) is a feasible method for varying speed fault diagnosis by revealing time-varying instantaneous frequency (IF) information in signals. However, most conventional TFA methods are not specifically designed for rotating machinery vibration signals and may not be able to handle these signals, especially in the presence of noise. Therefore, this paper develops a unique TFA method designated as synchroextracting frequency synchronous chirplet transform (SEFSCT) for vibration signal analysis and fault diagnosis of rotating machinery. In the proposed method, the frequency synchronous chirplet transform (FSCT) that utilizes the frequency synchronous chirp rate is first introduced, which takes fully into account the intrinsic proportional relationship of time-varying IFs of the signal. Then, to further concentrate the time–frequency representation (TFR) of FSCT, the synchroextracting operator is constructed based on the Gaussian modulated linear chirp model and the SEFSCT is naturally developed by integrating the FSCT and synchroextracting operator. With the proposed SEFSCT, a high-quality TFR can be generated, thus the time-varying IFs and mechanical failure can be accurately identified. The SEFSCT is employed to deal with synthetic and actual signals, and the results illustrate its efficacy in handling non-stationary signals and diagnosing the mechanical failure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
乌拉拉发布了新的文献求助10
3秒前
李爱国应助机智的然然采纳,获得10
3秒前
王先进发布了新的文献求助10
4秒前
5秒前
Xu发布了新的文献求助10
6秒前
8秒前
8秒前
胖达完成签到 ,获得积分10
9秒前
9秒前
JokerSkye发布了新的文献求助10
10秒前
10秒前
10秒前
领导范儿应助乌拉拉采纳,获得10
11秒前
12秒前
13秒前
康康发布了新的文献求助10
13秒前
科研通AI2S应助huang采纳,获得10
14秒前
14秒前
咻咻发布了新的文献求助10
14秒前
合适尔蝶发布了新的文献求助10
15秒前
在水一方应助个性若冰采纳,获得10
15秒前
所所应助Ray采纳,获得10
16秒前
简单面包完成签到,获得积分10
16秒前
16秒前
完美世界应助牧笛采纳,获得10
16秒前
16秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
打打应助猫小乐C采纳,获得10
22秒前
lunar完成签到 ,获得积分10
22秒前
22秒前
量子星尘发布了新的文献求助10
23秒前
25秒前
25秒前
b11发布了新的文献求助10
27秒前
进击的巨人完成签到 ,获得积分10
27秒前
cjh关闭了cjh文献求助
27秒前
28秒前
bzlish发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Co-Use of Alcohol and Cannabis: How Are They Related? 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5799295
求助须知:如何正确求助?哪些是违规求助? 5798781
关于积分的说明 15499670
捐赠科研通 4925751
什么是DOI,文献DOI怎么找? 2651626
邀请新用户注册赠送积分活动 1598681
关于科研通互助平台的介绍 1553565