氢溢流
材料科学
解吸
非阻塞I/O
X射线光电子能谱
动力学
氢
密度泛函理论
溢出效应
纳米技术
吸附
光化学
催化作用
化学物理
金属
分析化学(期刊)
化学工程
化学
物理化学
计算化学
色谱法
物理
生物化学
冶金
有机化学
量子力学
微观经济学
经济
工程类
作者
Haijie Cai,Na Luo,Xiaowu Wang,Mengmeng Guo,Xiaojie Li,Bo Lü,Zhenggang Xue,Jiaqiang Xu
出处
期刊:Small
[Wiley]
日期:2023-06-27
卷期号:19 (42)
被引量:37
标识
DOI:10.1002/smll.202302652
摘要
Palladium (Pd)-modified metal oxide semiconductors (MOSs) gas sensors often exhibit unexpected hydrogen (H2 ) sensing activity through a spillover effect. However, sluggish kinetics over a limited Pd-MOS surface seriously restrict the sensing process. Here, a hollow Pd-NiO/SnO2 buffered nanocavity is engineered to kinetically drive the H2 spillover over dual yolk-shell surface for the ultrasensitive H2 sensing. This unique nanocavity is found and can induce more H2 absorption and markedly improve kinetical H2 ab/desorption rates. Meanwhile, the limited buffer-room allows the H2 molecules to adequately spillover in the inside-layer surface and thus realize dual H2 spillover effect. Ex situ XPS, in situ Raman, and density functional theory (DFT) analysis further confirm that the Pd species can effectively combine H2 to form Pd-H bonds and then dissociate the hydrogen species to NiO/SnO2 surface. The final Pd-NiO/SnO2 sensors exhibit an ultrasensitive response (0.1-1000 ppm H2 ) and low actual detection limit (100 ppb) at the operating temperature of 230 °C, which surpass that of most reported H2 sensors.
科研通智能强力驱动
Strongly Powered by AbleSci AI