Energy regulation, energy innovation, and carbon intensity nexus in China: A nonlinear perspective

能量强度 经济 休克(循环) 人均 人力资本 强度(物理) 温室气体 计量经济学 自然资源经济学 高效能源利用 宏观经济学 货币经济学 经济增长 工程类 生态学 社会学 内科学 人口学 物理 电气工程 生物 医学 量子力学 人口
作者
Feng Yanzhe,Sana Ullah
出处
期刊:Energy & Environment [SAGE Publishing]
被引量:11
标识
DOI:10.1177/0958305x231188745
摘要

Considering the role of energy regulations and innovations in reducing energy-driven emissions, our main objective is to scrutinize the influence of energy regulations and innovations on carbon intensity in China over the period 1991–2020. In contrast to the previous studies, the analysis also focuses on the asymmetry assumption. The scientific value added to this study lies in its innovative methods and empirical evidence. The autoregressive distributed lag model, both linear and nonlinear, is utilized in the research to examine the short- and long-run estimates. The linear model highlights that energy regulations, energy innovations, and human capital reduce carbon intensity in the long run, while per capita income and financial development escalate it. However, only energy regulations and human capital help reduce carbon intensity in the short term. In the nonlinear models, the positive shock in environmental regulations reduces carbon intensity in short and long run. Conversely, the positive shock in energy innovations reduces carbon intensity in the long run. Negative shocks in energy regulations and innovations have a statistically insignificant impact on carbon intensity in both the short and long term. In addition, per capita income and financial development only increase carbon intensity in the long run, while human capital reduces carbon intensity in the short run. These findings advocate for implementing heavy energy taxes on firms and industries that rely heavily on fossil fuels. Increasing investment in green energy innovations is the need of the hour in lowering carbon intensity in China.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
brucelin完成签到,获得积分10
刚刚
zhangqy发布了新的文献求助10
1秒前
小强x完成签到,获得积分10
1秒前
魏佳旭完成签到,获得积分10
2秒前
2秒前
3秒前
简单刺猬发布了新的文献求助10
3秒前
3秒前
科研通AI5应助阿言采纳,获得30
3秒前
小粽子应助沉醉采纳,获得10
3秒前
jiafang完成签到,获得积分10
4秒前
4秒前
小二郎应助研友_qZAe6Z采纳,获得10
4秒前
4秒前
zier完成签到 ,获得积分10
5秒前
今后应助Aspirin采纳,获得10
5秒前
5秒前
5秒前
sxm1004完成签到,获得积分10
6秒前
泡泡发布了新的文献求助10
6秒前
Jasper应助灵泽采纳,获得10
7秒前
7秒前
8秒前
8秒前
圆彰七大发布了新的文献求助10
8秒前
大个应助红小豆采纳,获得10
9秒前
Jabowoo发布了新的文献求助10
9秒前
9秒前
科研小陈发布了新的文献求助10
9秒前
酷波er应助王小西采纳,获得10
9秒前
在水一方应助Lemon采纳,获得10
10秒前
SciGPT应助宁宁宁采纳,获得10
10秒前
Oliver发布了新的文献求助10
10秒前
Aspirin完成签到,获得积分10
10秒前
积极的罡发布了新的文献求助10
10秒前
HopeStar发布了新的文献求助10
10秒前
10秒前
善学以致用应助孤勇者采纳,获得30
11秒前
圈圈儿完成签到,获得积分20
11秒前
包元霜发布了新的文献求助10
11秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841351
求助须知:如何正确求助?哪些是违规求助? 3383439
关于积分的说明 10529854
捐赠科研通 3103519
什么是DOI,文献DOI怎么找? 1709323
邀请新用户注册赠送积分活动 823096
科研通“疑难数据库(出版商)”最低求助积分说明 773813