Self-supervised clustering analysis of colorectal cancer biomarkers based on multi-scale whole slides image and mass spectrometry imaging fused images

模式识别(心理学) 人工智能 聚类分析 质谱成像 计算机科学 分类 比例(比率) 化学 质谱法 色谱法 情报检索 量子力学 物理
作者
Zhen Li,Yusong Sun,Feng An,Hongyang Chen,Jun Liao
出处
期刊:Talanta [Elsevier]
卷期号:263: 124727-124727 被引量:2
标识
DOI:10.1016/j.talanta.2023.124727
摘要

Mass spectrometry imaging (MSI) is widely used for unlabeled molecular co-localization in biological samples and is also commonly used for screening cancer biomarkers. The main issues affecting the screening of cancer biomarkers are: 1) low-resolution MSI and pathological slices cannot be accurately matched; 2) a large amount of MSI data cannot be directly analyzed without manual annotation. This paper proposes a self-supervised cluster analysis method for colorectal cancer biomarkers based on multi-scale whole slide images (WSI) and MSI fusion images without manual annotation, which can accurately determine the correlation between molecules and lesion areas. This paper uses the combination of WSI multi-scale high-resolution and MSI high-dimensional data to obtain high-resolution fusion images. This method can observe the spatial distribution of molecules in pathological slices and use this method as an evaluation index for self-supervised screening of cancer biomarkers. The experimental results show that the method proposed in this chapter can train the image fusion model with a small amount of MSI and WSI data, and the mean Pixel Accuracy (mPA) and mean Intersection over Union (mIoU) evaluation metrics of the fused images can reach 0.9587 and 0.8745. And self-supervised clustering using MSI features and fused image features can obtain good classification results, and the precision, recall, and F1-score values of the self-supervised model reach 0.9074, 0.9065, and 0.9069, respectively. This method effectively combines the advantages of WSI and MSI, which will significantly expand the application scenarios of MSI and facilitate the screening of disease markers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助邓紫棋采纳,获得10
刚刚
hhhhh发布了新的文献求助10
刚刚
1秒前
kbj完成签到,获得积分10
2秒前
NOV发布了新的文献求助10
2秒前
田様应助耍酷傲菡采纳,获得10
2秒前
whyzz完成签到,获得积分10
3秒前
布布完成签到,获得积分10
3秒前
seven发布了新的文献求助10
4秒前
4秒前
搜集达人应助Thhhhm采纳,获得10
4秒前
Forrr完成签到,获得积分10
4秒前
4秒前
希望天下0贩的0应助小魏采纳,获得10
4秒前
青椒肉丝完成签到,获得积分10
4秒前
赘婿应助小仙女采纳,获得10
5秒前
汐畀完成签到,获得积分10
6秒前
liang完成签到,获得积分10
7秒前
Endeavor完成签到,获得积分10
7秒前
diudiu发布了新的文献求助10
7秒前
思源应助wyk采纳,获得10
7秒前
7秒前
怕黑的秋烟完成签到,获得积分10
9秒前
姜姗完成签到 ,获得积分10
9秒前
求助人员发布了新的文献求助10
10秒前
10秒前
10秒前
瘦瘦黑夜完成签到,获得积分20
11秒前
冰河完成签到 ,获得积分10
11秒前
守培发布了新的文献求助10
11秒前
窦房结发布了新的文献求助10
11秒前
12秒前
12秒前
量子星尘发布了新的文献求助20
13秒前
丰富的以筠完成签到,获得积分10
13秒前
13秒前
蓝天应助猴王采纳,获得30
13秒前
diudiu完成签到,获得积分10
14秒前
邓紫棋完成签到,获得积分10
14秒前
简悦发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601362
求助须知:如何正确求助?哪些是违规求助? 4686881
关于积分的说明 14846604
捐赠科研通 4680822
什么是DOI,文献DOI怎么找? 2539355
邀请新用户注册赠送积分活动 1506197
关于科研通互助平台的介绍 1471293