Self-supervised clustering analysis of colorectal cancer biomarkers based on multi-scale whole slides image and mass spectrometry imaging fused images

模式识别(心理学) 人工智能 聚类分析 质谱成像 计算机科学 分类 比例(比率) 化学 质谱法 色谱法 情报检索 量子力学 物理
作者
Zhen Li,Yusong Sun,Feng An,Hongyang Chen,Jun Liao
出处
期刊:Talanta [Elsevier BV]
卷期号:263: 124727-124727 被引量:1
标识
DOI:10.1016/j.talanta.2023.124727
摘要

Mass spectrometry imaging (MSI) is widely used for unlabeled molecular co-localization in biological samples and is also commonly used for screening cancer biomarkers. The main issues affecting the screening of cancer biomarkers are: 1) low-resolution MSI and pathological slices cannot be accurately matched; 2) a large amount of MSI data cannot be directly analyzed without manual annotation. This paper proposes a self-supervised cluster analysis method for colorectal cancer biomarkers based on multi-scale whole slide images (WSI) and MSI fusion images without manual annotation, which can accurately determine the correlation between molecules and lesion areas. This paper uses the combination of WSI multi-scale high-resolution and MSI high-dimensional data to obtain high-resolution fusion images. This method can observe the spatial distribution of molecules in pathological slices and use this method as an evaluation index for self-supervised screening of cancer biomarkers. The experimental results show that the method proposed in this chapter can train the image fusion model with a small amount of MSI and WSI data, and the mean Pixel Accuracy (mPA) and mean Intersection over Union (mIoU) evaluation metrics of the fused images can reach 0.9587 and 0.8745. And self-supervised clustering using MSI features and fused image features can obtain good classification results, and the precision, recall, and F1-score values of the self-supervised model reach 0.9074, 0.9065, and 0.9069, respectively. This method effectively combines the advantages of WSI and MSI, which will significantly expand the application scenarios of MSI and facilitate the screening of disease markers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
岫末大人完成签到,获得积分10
1秒前
所所应助美好斓采纳,获得10
1秒前
Leo完成签到,获得积分10
1秒前
小贵梓发布了新的文献求助10
2秒前
北落发布了新的文献求助10
2秒前
ozma发布了新的文献求助10
2秒前
白米完成签到,获得积分10
2秒前
Bio应助内向诗双采纳,获得30
3秒前
missinglotta发布了新的文献求助10
3秒前
好好学习的小学生完成签到 ,获得积分10
4秒前
雨忠完成签到,获得积分10
4秒前
CodeCraft应助老实寒云采纳,获得10
4秒前
asenda完成签到,获得积分0
4秒前
执着的翠梅完成签到,获得积分10
5秒前
小蜜峰儿完成签到 ,获得积分10
5秒前
zyy完成签到,获得积分20
5秒前
何为发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
文静的路人完成签到,获得积分20
7秒前
情怀应助missinglotta采纳,获得30
7秒前
稳重紫蓝完成签到 ,获得积分10
7秒前
Shaynin完成签到,获得积分10
8秒前
rh1006完成签到,获得积分10
8秒前
嘻嘻嘻发布了新的文献求助100
8秒前
单迎蕾完成签到,获得积分10
9秒前
9秒前
9秒前
歪f发布了新的文献求助40
9秒前
tree完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
李健的小迷弟应助小贵梓采纳,获得10
11秒前
彭于彦祖完成签到,获得积分0
12秒前
知了发布了新的文献求助10
12秒前
慕青应助啦啦啦采纳,获得10
13秒前
Strolling完成签到,获得积分10
13秒前
华仔应助玩命的小虾米采纳,获得10
13秒前
领导范儿应助小歪同学采纳,获得10
14秒前
好好好完成签到 ,获得积分10
14秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1155
Genomic signature of non-random mating in human complex traits 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4107271
求助须知:如何正确求助?哪些是违规求助? 3645360
关于积分的说明 11547389
捐赠科研通 3351918
什么是DOI,文献DOI怎么找? 1841695
邀请新用户注册赠送积分活动 908214
科研通“疑难数据库(出版商)”最低求助积分说明 825337