清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An Evidential Multi-Target Domain Adaptation Method Based on Weighted Fusion for Cross-Domain Pattern Classification

加权 分类器(UML) 人工智能 模式识别(心理学) 计算机科学 域适应 协方差 领域(数学分析) 数据挖掘 机器学习 数学 统计 医学 放射科 数学分析
作者
Linqing Huang,Wangbo Zhao,Yong Liu,Duo Yang,Alan Wee‐Chung Liew,Yang You
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (10): 14218-14232 被引量:18
标识
DOI:10.1109/tnnls.2023.3275759
摘要

For cross-domain pattern classification, the supervised information (i.e., labeled patterns) in the source domain is often employed to help classify the unlabeled target domain patterns. In practice, multiple target domains are usually available. The unlabeled patterns (in different target domains) which have high-confidence predictions, can also provide some pseudo-supervised information for the downstream classification task. The performance in each target domain would be further improved if the pseudo-supervised information in different target domains can be effectively used. To this end, we propose an evidential multi-target domain adaptation (EMDA) method to take full advantage of the useful information in the single-source and multiple target domains. In EMDA, we first align distributions of the source and target domains by reducing maximum mean discrepancy (MMD) and covariance difference across domains. After that, we use the classifier learned by the labeled source domain data to classify query patterns in the target domains. The query patterns with high-confidence predictions are then selected to train a new classifier for yielding an extra piece of soft classification results of query patterns. The two pieces of soft classification results are then combined by evidence theory. In practice, their reliabilities/weights are usually diverse, and an equal treatment of them often yields the unreliable combination result. Thus, we propose to use the distribution discrepancy across domains to estimate their weighting factors, and discount them before fusing. The evidential combination of the two pieces of discounted soft classification results is employed to make the final class decision. The effectiveness of EMDA was verified by comparing with many advanced domain adaptation methods on several cross-domain pattern classification benchmark datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xwx发布了新的文献求助30
1秒前
朴素的山蝶完成签到 ,获得积分10
26秒前
GankhuyagJavzan完成签到,获得积分10
28秒前
45秒前
gyx完成签到 ,获得积分10
1分钟前
冷静的棒棒糖完成签到 ,获得积分10
1分钟前
小文子完成签到 ,获得积分10
2分钟前
Jasper应助Zxxxx采纳,获得20
2分钟前
dream完成签到 ,获得积分10
2分钟前
3分钟前
Zxxxx发布了新的文献求助20
3分钟前
小强完成签到 ,获得积分10
3分钟前
土拨鼠完成签到 ,获得积分10
3分钟前
大个应助科研通管家采纳,获得10
3分钟前
孙皓然完成签到 ,获得积分10
4分钟前
Camila完成签到,获得积分10
4分钟前
爱吃鱼的猫完成签到,获得积分10
4分钟前
小么完成签到 ,获得积分10
4分钟前
TOUHOUU完成签到 ,获得积分10
4分钟前
搞怪白秋完成签到 ,获得积分10
4分钟前
coolru完成签到 ,获得积分20
4分钟前
夏夜完成签到 ,获得积分10
4分钟前
现实的俊驰完成签到 ,获得积分10
4分钟前
田様应助Epiphany采纳,获得10
5分钟前
5分钟前
Epiphany发布了新的文献求助10
5分钟前
研友_nxw2xL完成签到,获得积分10
5分钟前
Epiphany完成签到,获得积分10
5分钟前
muriel完成签到,获得积分10
5分钟前
香蕉觅云应助科研通管家采纳,获得10
5分钟前
6分钟前
6分钟前
NexusExplorer应助qixinyi采纳,获得10
6分钟前
yhlyhlyhl发布了新的文献求助20
6分钟前
CC完成签到,获得积分0
7分钟前
123完成签到 ,获得积分10
7分钟前
yaya完成签到 ,获得积分10
7分钟前
老石完成签到 ,获得积分10
7分钟前
柠檬完成签到,获得积分10
7分钟前
传奇完成签到 ,获得积分10
7分钟前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827322
求助须知:如何正确求助?哪些是违规求助? 3369656
关于积分的说明 10456605
捐赠科研通 3089268
什么是DOI,文献DOI怎么找? 1699830
邀请新用户注册赠送积分活动 817502
科研通“疑难数据库(出版商)”最低求助积分说明 770251