MINI-AC: Inference of plant gene regulatory networks using bulk or single-cell accessible chromatin profiles

计算生物学 染色质 基因调控网络 生物 基因 转录因子 推论 拟南芥 背景(考古学) 计算机科学 遗传学 基因表达 人工智能 古生物学 突变体
作者
Nicolás Manosalva Pérez,Camilla Ferrari,Julia Engelhorn,Thomas Depuydt,Hilde Nelissen,Thomas Hartwig,Klaas Vandepoele
标识
DOI:10.1101/2023.05.26.542269
摘要

Abstract Gene regulatory networks (GRNs) represent the interactions between transcription factors (TF) and their target genes. GRNs control transcriptional programs involved in growth, development and stress responses, ultimately affecting diverse agricultural traits. While recent developments in accessible chromatin (AC) profiling technologies make it possible to identify context-specific regulatory DNA, learning the underlying GRNs remains a major challenge. We developed MINI-AC (Motif-Informed Network Inference based on Accessible Chromatin), a method that combines AC data from bulk or single-cell experiments with TF binding site information to learn GRNs in plants. We benchmarked MINI-AC using bulk AC datasets from different Arabidopsis thaliana tissues and showed that it outperforms other methods to identify correct TFs binding sites. In maize, a crop with a complex genome and abundant distal AC regions, MINI-AC successfully inferred leaf GRNs with experimentally confirmed, both proximal and distal, TF-target gene interactions. Furthermore, we showed that both AC regions and footprints are valid alternatives to infer AC-based GRNs with MINI-AC. Finally, we combined MINI-AC predictions from bulk and single-cell AC datasets to identify general and cell-type specific maize leaf regulators. Focusing on C4 metabolism, we identified diverse regulatory interactions in specialized cell types for this photosynthetic pathway. MINI-AC represents a powerful tool for inferring accurate AC-derived GRNs in plants and identifying known and novel candidate regulators, improving our understanding of gene regulation in plants.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jacinta完成签到 ,获得积分10
刚刚
在水一方应助arniu2008采纳,获得10
1秒前
斯文败类应助Huay采纳,获得10
1秒前
小马甲应助二浪采纳,获得10
1秒前
徐向成发布了新的文献求助10
2秒前
3秒前
lanxinyue应助凯nb1采纳,获得10
4秒前
5秒前
6秒前
DrShiva发布了新的文献求助10
8秒前
10秒前
小福完成签到 ,获得积分10
11秒前
香蕉觅云应助wulala采纳,获得10
13秒前
木仓完成签到,获得积分10
15秒前
Huay发布了新的文献求助10
15秒前
dodo完成签到 ,获得积分10
16秒前
捉迷藏完成签到,获得积分0
16秒前
斯文败类应助否定的否定采纳,获得10
16秒前
大模型应助fanghua采纳,获得10
17秒前
mary完成签到,获得积分10
18秒前
活着完成签到 ,获得积分10
19秒前
席涑发布了新的文献求助10
20秒前
泽宇完成签到,获得积分20
24秒前
24秒前
记忆力超人完成签到,获得积分10
25秒前
孟相浩完成签到,获得积分10
28秒前
29秒前
ACh3完成签到 ,获得积分10
31秒前
汉堡包应助苏州小北采纳,获得10
32秒前
我是老大应助啦啦啦采纳,获得10
32秒前
李爱国应助纯真的凝安采纳,获得10
35秒前
35秒前
songmt1988完成签到,获得积分10
36秒前
烟花应助阿七采纳,获得10
37秒前
lucky完成签到,获得积分10
38秒前
38秒前
38秒前
ding应助平淡南霜采纳,获得10
39秒前
俊逸随阴完成签到 ,获得积分20
39秒前
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Signals, Systems, and Signal Processing 880
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Discrete-Time Signals and Systems 510
Clinical Efficacy of the Hydrogel Patch Containing Loxoprofen Sodium (LX-A) on Osteoarthritis of the Knee-A Randomized, Open Label Clinical Study with Ketoprofen Patch-(Phase III Therapeutic Confirmatory Study) 410
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5844240
求助须知:如何正确求助?哪些是违规求助? 6188196
关于积分的说明 15613700
捐赠科研通 4960994
什么是DOI,文献DOI怎么找? 2674616
邀请新用户注册赠送积分活动 1619472
关于科研通互助平台的介绍 1574742