Lithium battery remaining useful life prediction using VMD fusion with attention mechanism and TCN

机制(生物学) 电池(电) 融合 计算机科学 锂(药物) 人工智能 心理学 物理 功率(物理) 热力学 语言学 哲学 量子力学 精神科
作者
Guang Wang,Longfei Sun,Anjie Wang,Jianfang Jiao,Jiale Xie
出处
期刊:Journal of energy storage [Elsevier]
卷期号:93: 112330-112330 被引量:42
标识
DOI:10.1016/j.est.2024.112330
摘要

The remaining useful life (RUL) of a lithium battery is an important index for an efficient battery management system, and the accurate prediction of RUL is beneficial for designing a reliable battery system, ensuring the safety and reliability of actual operation, and therefore playing a crucial role in the field of new energy. This study introduces an integrated data-driven approach for predicting the RUL of lithium-ion batteries. The method employs a variety of techniques, including signal decomposition techniques, attention mechanisms, and temporal convolutional neural networks (TCN). Initially, the measured capacity data are decoupled by the Variational Mode Decomposition (VMD) algorithm to separate the overall trend and the high-frequency oscillations in the capacity data. Subsequently, an attention mechanism is incorporated when processing temporal capacitance sequences, empowering automatic relevance determination across timepoints to dynamically optimize model training. In addition, a TCN structure is designed to efficiently capture key features of time series data. A series of comparative experiments are conducted on the lithium battery dataset from the University of Maryland to verify the accuracy and effectiveness of the proposed method. The experimental results show that the method performs well in lithium battery RUL prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助拼搏麦片采纳,获得10
2秒前
Orange应助Hiky_0703采纳,获得10
3秒前
7秒前
mao完成签到 ,获得积分10
7秒前
Dawn完成签到,获得积分10
10秒前
无花果应助微笑乘云采纳,获得10
11秒前
烟花应助卡坦精采纳,获得10
11秒前
大方鲂发布了新的文献求助10
12秒前
14秒前
MING发布了新的文献求助10
15秒前
大眼的平松完成签到,获得积分10
15秒前
拼搏麦片发布了新的文献求助10
20秒前
jackten完成签到,获得积分10
21秒前
阔达盈完成签到 ,获得积分10
26秒前
yhw完成签到 ,获得积分20
27秒前
海绵宝宝完成签到,获得积分20
28秒前
白云完成签到,获得积分10
29秒前
30秒前
30秒前
咖咖一咖咖完成签到 ,获得积分10
32秒前
小蘑菇应助MING采纳,获得30
34秒前
XS_QI发布了新的文献求助10
35秒前
yiyi完成签到 ,获得积分20
36秒前
叼着奶瓶上天完成签到,获得积分10
36秒前
含蓄戾完成签到 ,获得积分10
41秒前
51秒前
雨打春柳完成签到 ,获得积分10
52秒前
53秒前
panpan发布了新的文献求助30
56秒前
577发布了新的文献求助10
58秒前
XX关闭了XX文献求助
1分钟前
真实的火车完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5847481
求助须知:如何正确求助?哪些是违规求助? 6226602
关于积分的说明 15620255
捐赠科研通 4964154
什么是DOI,文献DOI怎么找? 2676451
邀请新用户注册赠送积分活动 1621016
关于科研通互助平台的介绍 1576953