Integration of Multicomplex‐Based Pharmacophore Modeling and Molecular Docking in Machine Learning‐Based Virtual Screening: Toward the Discovery of Novel PI3K Inhibitors

药效团 虚拟筛选 对接(动物) 计算机科学 计算生物学 药物发现 蛋白质-配体对接 机器学习 人工智能 化学 生物信息学 生物 医学 护理部
作者
Shuo Qiu,Lixin Jia,Shujuan Yuan,Yanfei Cai,Yun Chen,Jian Jin,Lei Xu,Yu Li,Jingyu Zhu
出处
期刊:Advanced theory and simulations [Wiley]
标识
DOI:10.1002/adts.202400312
摘要

Abstract The phosphatidylinositol‐3 kinase (PI3K) pathway is a crucial intracellular signaling pathway within living cells. The hyperactivation of PI3K signaling cascades is a common occurrence in human cancers, rendering PI3K a promising therapeutic target. Although several PI3K inhibitors are already available on the market, the adverse side effects of current therapies continue to highlight the necessity for the development of novel PI3K inhibitors. In this study, a virtual screening strategy employing naïve Bayesian classification (NBC) models, based on multicomplex‐based molecular docking and pharmacophore modeling, is developed. First, the docking accuracy and scoring reliability of four docking software are assessed, and Glide demonstrated higher predictability for PI3K inhibitors. Second, pharmacophore models are generated based on the current reported PI3K‐inhibitor interactions, and five pharmacophore hypotheses displayed significant capability in discriminating active PI3K molecules from inactive ones. Subsequently, three NBC models are constructed based on molecular docking and/or pharmacophore models, and the validation results showed that the NBC model, combining multicomplex‐based molecular docking and pharmacophore, significantly improved the hit rate of virtual screening against PI3K. Finally, the optimal NBC model is employed for virtual screening against the ChEMBL database, leading to the identification of multiple molecules with high potential as active PI3K inhibitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
zxcvbnm完成签到 ,获得积分10
6秒前
7秒前
煮饭吃Zz完成签到 ,获得积分10
9秒前
hhh2018687发布了新的文献求助10
17秒前
韧迹完成签到 ,获得积分10
23秒前
加油完成签到 ,获得积分10
24秒前
乐正熠彤完成签到,获得积分10
29秒前
小奋青完成签到 ,获得积分10
29秒前
伯爵大人完成签到,获得积分10
30秒前
喜悦宫苴完成签到,获得积分10
31秒前
33秒前
37秒前
XU博士完成签到,获得积分10
39秒前
lxlcx应助科研通管家采纳,获得20
39秒前
个性归尘应助科研通管家采纳,获得10
39秒前
lxlcx应助科研通管家采纳,获得20
40秒前
个性归尘应助科研通管家采纳,获得10
40秒前
个性归尘应助科研通管家采纳,获得10
40秒前
天天快乐应助大二郎采纳,获得10
42秒前
犹豫的若完成签到,获得积分10
46秒前
鸽子汤完成签到 ,获得积分10
47秒前
稳重紫蓝完成签到 ,获得积分10
50秒前
53秒前
zgsn完成签到,获得积分10
56秒前
大二郎发布了新的文献求助10
58秒前
59秒前
宋泽艺完成签到 ,获得积分10
1分钟前
饱满烙完成签到 ,获得积分10
1分钟前
Harlotte完成签到 ,获得积分10
1分钟前
Don完成签到 ,获得积分10
1分钟前
干净小虾米完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
渔渔完成签到 ,获得积分10
1分钟前
帆帆帆完成签到 ,获得积分10
1分钟前
runtang完成签到,获得积分10
1分钟前
Cai完成签到,获得积分10
1分钟前
小学生学免疫完成签到 ,获得积分10
1分钟前
不想洗碗完成签到 ,获得积分10
1分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Study of enhancing employee engagement at workplace by adopting internet of things 200
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837587
求助须知:如何正确求助?哪些是违规求助? 3379705
关于积分的说明 10510152
捐赠科研通 3099308
什么是DOI,文献DOI怎么找? 1707062
邀请新用户注册赠送积分活动 821402
科研通“疑难数据库(出版商)”最低求助积分说明 772615