ER-Swin: Feature Enhancement and Refinement Network Based on Swin Transformer for Semantic Segmentation of Remote Sensing Images

计算机科学 分割 特征(语言学) 人工智能 图像分割 变压器 计算机视觉 特征提取 模式识别(心理学) 工程类 哲学 语言学 电压 电气工程
作者
Jiang Liu,Shuli Cheng,Anyu Du
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:21: 1-5 被引量:1
标识
DOI:10.1109/lgrs.2024.3403088
摘要

As the field of remote sensing images processing continues to advance, semantic segmentation has become a focal point in this domain. The emergence of Swin Transformer has greatly alleviated the computational complexities associated with Transformers, leading to its widespread application in the field of semantic segmentation. However, most current network models lack a feature enhancement process internally, and the model's tail lacks refinement modules to prevent category misjudgments caused by feature redundancy. To address this issue, we propose ER-Swin to explore the potential of utilizing Swin Transformer as the backbone network for semantic segmentation in remote sensing images. Addressing the need for feature enhancement in the backbone network, we propose the Interactive Feature Enhancement Attention (IFEA), which leverages diagonal information interaction to augment features. Additionally, we design the Semantic Selective Refinement Module (SSRM) to refine the rich features at the tail end of the network, thereby enhancing segmentation outcomes. We evaluate our model on the Vaihingen, Potsdam and LoveDA datasets, and achieved accuracies of 84.89%, 87.20%, and 55.1% on the mIoU metric. Through comparative experiments, we demonstrate the superior segmentation performance of our model, affirming its competitivenes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助Qiuling采纳,获得10
刚刚
zhiweiyan完成签到,获得积分10
1秒前
April完成签到,获得积分10
1秒前
邓超发布了新的文献求助30
1秒前
小磊子发布了新的文献求助10
1秒前
852应助闪闪翎采纳,获得10
1秒前
丘比特应助闪闪翎采纳,获得10
1秒前
Lysine完成签到,获得积分10
2秒前
19558991211发布了新的文献求助10
3秒前
30040完成签到,获得积分10
3秒前
3秒前
一轮太阳和幻想完成签到,获得积分10
3秒前
Li完成签到,获得积分10
4秒前
5秒前
air发布了新的文献求助10
5秒前
SZY完成签到 ,获得积分10
6秒前
突突突完成签到,获得积分10
6秒前
8秒前
8秒前
8秒前
慕青应助白小白采纳,获得10
9秒前
白兰鸽发布了新的文献求助10
9秒前
9秒前
9秒前
Handsome完成签到,获得积分10
10秒前
王雪发布了新的文献求助10
12秒前
文艺的青旋完成签到 ,获得积分10
12秒前
maox1aoxin应助fish2333采纳,获得30
12秒前
12秒前
13秒前
zhouleiwang发布了新的文献求助10
14秒前
SCI完成签到,获得积分10
14秒前
缓慢冬莲发布了新的文献求助10
14秒前
14秒前
文艺的筝发布了新的文献求助10
14秒前
ONION发布了新的文献求助10
14秒前
科研栾完成签到 ,获得积分10
14秒前
3080完成签到 ,获得积分10
16秒前
17秒前
17秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798779
求助须知:如何正确求助?哪些是违规求助? 3344526
关于积分的说明 10320295
捐赠科研通 3060965
什么是DOI,文献DOI怎么找? 1679936
邀请新用户注册赠送积分活动 806795
科研通“疑难数据库(出版商)”最低求助积分说明 763386