Red-billed blue magpie optimizer: a novel metaheuristic algorithm for 2D/3D UAV path planning and engineering design problems

计算机科学 稳健性(进化) 元启发式 群体智能 趋同(经济学) 路径(计算) 数学优化 群体行为 算法 人工智能 粒子群优化 数学 生物化学 化学 经济 基因 程序设计语言 经济增长
作者
Shengwei Fu,Ke Li,Haisong Huang,Chi Ma,Qingsong Fan,Yunwei Zhu
出处
期刊:Artificial Intelligence Review [Springer Science+Business Media]
卷期号:57 (6) 被引量:44
标识
DOI:10.1007/s10462-024-10716-3
摘要

Abstract Numerical optimization, Unmanned Aerial Vehicle (UAV) path planning, and engineering design problems are fundamental to the development of artificial intelligence. Traditional methods show limitations in dealing with these complex nonlinear models. To address these challenges, the swarm intelligence algorithm is introduced as a metaheuristic method and effectively implemented. However, existing technology exhibits drawbacks such as slow convergence speed, low precision, and poor robustness. In this paper, we propose a novel metaheuristic approach called the Red-billed Blue Magpie Optimizer (RBMO), inspired by the cooperative and efficient predation behaviors of red-billed blue magpies. The mathematical model of RBMO was established by simulating the searching, chasing, attacking prey, and food storage behaviors of the red-billed blue magpie. To demonstrate RBMO’s performance, we first conduct qualitative analyses through convergence behavior experiments. Next, RBMO’s numerical optimization capabilities are substantiated using CEC2014 (Dim = 10, 30, 50, and 100) and CEC2017 (Dim = 10, 30, 50, and 100) suites, consistently achieving the best Friedman mean rank. In UAV path planning applications (two-dimensional and three − dimensional), RBMO obtains preferable solutions, demonstrating its effectiveness in solving NP-hard problems. Additionally, in five engineering design problems, RBMO consistently yields the minimum cost, showcasing its advantage in practical problem-solving. We compare our experimental results with three categories of widely recognized algorithms: (1) advanced variants, (2) recently proposed algorithms, and (3) high-performance optimizers, including CEC winners.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
panglei发布了新的文献求助10
1秒前
一叶扁舟发布了新的文献求助10
2秒前
bc应助plh采纳,获得20
2秒前
无与伦比完成签到,获得积分10
2秒前
可爱的函函应助lmy采纳,获得10
2秒前
hfy完成签到,获得积分10
3秒前
八九十发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
baobao发布了新的文献求助10
4秒前
liyihua发布了新的文献求助10
4秒前
江峰完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
哎呦喂完成签到,获得积分10
5秒前
丘比特应助猪猪女孩采纳,获得10
6秒前
6秒前
ding应助豆豆可采纳,获得10
7秒前
神揽星辰入梦完成签到,获得积分10
7秒前
芝芝椰奶冻完成签到,获得积分10
7秒前
可爱的函函应助如意草丛采纳,获得10
7秒前
江江完成签到,获得积分10
7秒前
7秒前
李lll发布了新的文献求助10
7秒前
圆缘园发布了新的文献求助10
8秒前
小雅发布了新的文献求助10
8秒前
8秒前
迅语完成签到,获得积分10
8秒前
Jasper应助花粉过敏采纳,获得10
8秒前
9秒前
李爱国应助Zymiao采纳,获得10
9秒前
krislan完成签到,获得积分10
10秒前
10秒前
jiujiu完成签到,获得积分10
10秒前
Aurora发布了新的文献求助10
11秒前
迅语发布了新的文献求助10
11秒前
肯德基没有黄焖鸡完成签到 ,获得积分10
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792875
求助须知:如何正确求助?哪些是违规求助? 3337413
关于积分的说明 10285064
捐赠科研通 3054136
什么是DOI,文献DOI怎么找? 1675825
邀请新用户注册赠送积分活动 803795
科研通“疑难数据库(出版商)”最低求助积分说明 761561