Nanosecond Structural Dynamics during Electrical Melting of Charge Density Waves in 1T−TaS2

介观物理学 纳秒 材料科学 电场 凝聚态物理 物理 光学 量子力学 激光器
作者
Daniel B. Durham,Thomas E. Gage,Connor P. Horn,Xuedan Ma,Haihua Liu,Ilke Arslan,Supratik Guha,Charudatta Phatak
出处
期刊:Physical Review Letters [American Physical Society]
卷期号:132 (22) 被引量:1
标识
DOI:10.1103/physrevlett.132.226201
摘要

Electrical control of charge density waves has been of immense interest, as the strong underlying electron-lattice interactions potentially open new, efficient pathways for manipulating their ordering and, consequently, their electronic properties. However, the transition mechanisms are often unclear as electric field, current, carrier injection, heat, and strain can all contribute and play varying roles across length scales and timescales. Here, we provide insight on how electrical stimulation melts the room temperature charge density wave order in $1\mathrm{T}\text{\ensuremath{-}}{\mathrm{TaS}}_{2}$ by visualizing the atomic and mesoscopic structural dynamics from quasi-static to nanosecond pulsed melting. Using a newly developed ultrafast electron microscope setup with electrical stimulation, we reveal the order and strain dynamics during voltage pulses as short as 20 ns. The order parameter dynamics across a range of pulse amplitudes and durations support a thermally driven mechanism even for fields as high as $19\text{ }\text{ }\mathrm{kV}\text{ }{\mathrm{cm}}^{\ensuremath{-}1}$. In addition, time-resolved imaging reveals a heterogeneous, mesoscopic strain response across the flake, including MHz-scale acoustic resonances that emerge during sufficiently short pulsed excitation which may modulate the order. These results suggest that metallic charge density wave phases like studied here may be more robust to electronic switching pathways than insulating ones, motivating further investigations at higher fields and currents in this and other related systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
vv完成签到 ,获得积分10
1秒前
3秒前
Rui完成签到 ,获得积分10
7秒前
10秒前
hutian完成签到,获得积分10
12秒前
科目三应助危机的碧菡采纳,获得10
13秒前
田様应助sss采纳,获得30
16秒前
yxj完成签到,获得积分10
19秒前
WY完成签到,获得积分10
23秒前
25秒前
25秒前
欣喜书易完成签到 ,获得积分10
28秒前
29秒前
29秒前
sss发布了新的文献求助30
30秒前
liu发布了新的文献求助10
31秒前
风趣问蕊发布了新的文献求助10
34秒前
Sun发布了新的文献求助10
36秒前
36秒前
liu完成签到,获得积分10
39秒前
39秒前
41秒前
H_C发布了新的文献求助20
41秒前
xiaoyinni发布了新的文献求助20
44秒前
Luna爱科研完成签到 ,获得积分10
45秒前
热情的乐荷完成签到,获得积分10
45秒前
46秒前
清蒸可达鸭完成签到,获得积分10
48秒前
一周八颗蛋完成签到 ,获得积分10
50秒前
挖井发布了新的文献求助10
50秒前
精明的问芙完成签到,获得积分10
50秒前
饱满一手完成签到 ,获得积分10
52秒前
FashionBoy应助556677y采纳,获得30
53秒前
鹏化饼干发布了新的文献求助10
56秒前
57秒前
1分钟前
1分钟前
wuww完成签到 ,获得积分10
1分钟前
丁丁发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
How to Develop Robust Scale-up Strategies for Complex Injectable Dosage Forms 450
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5862475
求助须知:如何正确求助?哪些是违规求助? 6381823
关于积分的说明 15646152
捐赠科研通 4976035
什么是DOI,文献DOI怎么找? 2684399
邀请新用户注册赠送积分活动 1627684
关于科研通互助平台的介绍 1585268