A periodic-modulation-oriented noise resistant correlation method for industrial fault diagnostics of rotating machinery under the circumstances of limited system signal availability

噪音(视频) 信号(编程语言) 信号传递函数 断层(地质) 包络线(雷达) 信号处理 白噪声 滚动轴承 工程类 计算机科学 电子工程 算法 控制理论(社会学) 人工智能 模拟信号 声学 数字信号处理 电信 物理 控制(管理) 图像(数学) 程序设计语言 雷达 振动 地震学 地质学
作者
Yaochun Hou,Peng Wu,Dazhuan Wu
出处
期刊:Isa Transactions [Elsevier]
卷期号:151: 258-284 被引量:2
标识
DOI:10.1016/j.isatra.2024.05.051
摘要

The periodical impulses caused by localized defects of components are the vital characteristic information for fault detection and diagnosis of rotating machines. In recent years, multitudinous spectrum analysis-based signal processing methods have been developed and authenticated as the powerful tools for excavating fault-related repetitive transients from the measured complex signals. Nonetheless, in practice, their applications can be severely confined by the constraints of limited system signal availability and incomplete information extraction under intricate noise interferences. To tackle the aforementioned issues, this paper proposes a periodic-modulation-oriented noise resistant correlation (PMONRC) method for target period detection and fault diagnosis of rotating machinery. Firstly, the envelope of raw signal is obtained via a novel sequential procedure of signal element-wise squaring, spectral Gini index-guided adaptive low-pass filtering, and signal element-wise square root computation, to highlight the modulated wave component that is more likely to be related to the potential fault-induced periods. Subsequently, a series of sub-signals, which can encode the fault-related repetitive information and enhance noise resistance, are constructed utilizing the envelope signal. Based upon the envelope signal and the obtained sub-signals, a weighted envelope noise resistant correlation function can be derived with the assistance of the L-moment ratio-based indicator and Sigmoid transformation. Finally, the specific fault type of the rotating machinery can be identified and affirmed accordingly. The proposed PMONRC method, which is nonparametric and completely adaptive to the signal being processed itself, overcomes the deficiencies of spectral analysis-based approaches, and is applicable for the engineering circumstances of system signal limitation and low signal-to-noise ratio (SNR), possessing immense practical merit. Both simulation analyses and experimental validations profoundly demonstrate that the proposed method is superior to other existing state-of-the-art time-domain correlation methods. Moreover, as an attempt as well as exemplar to apply this method, the PMONRC-based incipient fault diagnostic results of rolling bearing data from the well-known experimental platform PRONOSTIA are presented and discussed as well, to further elucidate the effectiveness and practical engineering significance of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
懒大王完成签到 ,获得积分10
2秒前
2秒前
一朵小鲜花儿完成签到,获得积分10
3秒前
SciGPT应助眯眯眼的嵩采纳,获得20
3秒前
灼灼朗朗发布了新的文献求助10
3秒前
huanir99完成签到 ,获得积分10
4秒前
郑浩完成签到,获得积分10
4秒前
5秒前
6秒前
拼搏的飞薇完成签到,获得积分10
7秒前
活泼的钢铁侠完成签到 ,获得积分10
7秒前
123321完成签到,获得积分10
7秒前
Sophie完成签到,获得积分10
9秒前
今后应助lingzhi采纳,获得10
10秒前
you发布了新的文献求助10
10秒前
herschelwu完成签到,获得积分10
10秒前
10秒前
达西西完成签到 ,获得积分10
10秒前
Tianz完成签到,获得积分10
11秒前
fengchen关注了科研通微信公众号
11秒前
Jack完成签到 ,获得积分10
11秒前
科研通AI6.1应助端庄弼采纳,获得10
11秒前
juzi发布了新的文献求助10
12秒前
李健的小迷弟应助大力采纳,获得10
12秒前
zhengzhao完成签到,获得积分10
13秒前
杨凡发布了新的文献求助10
13秒前
15秒前
Hcc完成签到 ,获得积分10
15秒前
心灵美的不斜完成签到 ,获得积分10
16秒前
汉堡包应助负责的幻天采纳,获得30
18秒前
18秒前
18秒前
深情安青应助最好的采纳,获得10
19秒前
20秒前
20秒前
oo完成签到,获得积分10
21秒前
美杜莎发布了新的文献求助10
21秒前
次时代发布了新的文献求助10
21秒前
Liuruijia完成签到 ,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Psychology and Work Today 1200
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5836024
求助须知:如何正确求助?哪些是违规求助? 6109387
关于积分的说明 15593874
捐赠科研通 4954327
什么是DOI,文献DOI怎么找? 2670273
邀请新用户注册赠送积分活动 1615563
关于科研通互助平台的介绍 1570641