生物
生态学
亚马逊河
河岸林
生物多样性
栖息地
河岸带
亚马逊雨林
作者
Clarisse Palma‐Silva,Amanda Frederico Mortati,Cleber Juliano Neves Chaves,Bárbara Simões Santos Leal,Rafael Vasconcelos Ribeiro,Fábio Pinheiro,Milene Ferro,Diego Mauricio Riaño‐Pachón,Jacqueline Salvi de Mattos,Marília Manupella Tavares,Paulo Aecyo,Tami da Costa Cacossi,Jochen Schӧngart,María Teresa Fernández Piedade,Thiago André
摘要
Abstract Environmental stress is a fundamental facet of life and a significant driver of natural selection in the wild. Gene expression diversity may facilitate adaptation to environmental changes, without necessary genetic change, but its role in adaptive divergence remains largely understudied in Neotropical systems. In Amazonian riparian forests, species distribution is predominantly influenced by species' waterlogging tolerance. The flooding gradient delineates distinct wetland forest types, shaping habitats and species characteristics. Here we investigated the molecular basis of environmental stress response in a tropical ground‐herb species ( Ischnosiphon puberulus ) to environmental variation in Amazonian riparian forests. We compared environmental variables and gene expression profiles from individuals collected in two forest types: Igapó and Terra firme in the Amazonian riparian forests. Predictable seasonal flooding poses a significant challenge in Igapó compared to Terra firme environments, with the former presenting higher water column height and longer flooding duration. Our findings suggest that contrasting environmental conditions related to flooding regimes are important drivers of population genetic differentiation and differential gene expression in I. puberulus . Enriched gene ontology terms highlight associations with environmental stresses, such as defence response, water transport, phosphorylation, root development, response to auxin, salicylic acid and oxidative stress. By uncovering key environmental stress response pathways conserved across populations, I. puberulus offers novel genetic insights into the molecular basis of plant reactions to environmental constraints found in flooded areas of this highly biodiverse neotropical ecosystem.
科研通智能强力驱动
Strongly Powered by AbleSci AI