CNSMolGen: A Bidirectional Recurrent Neural Network-Based Generative Model for De Novo Central Nervous System Drug Design

人工神经网络 中枢神经系统 生成语法 神经科学 计算机科学 生成模型 药品 药物发现 循环神经网络 人工智能 医学 生物 生物信息学 药理学
作者
Rongpei Gou,Jingyi Yang,Menghan Guo,Yingjun Chen,Weiwei Xue
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (10): 4059-4070 被引量:9
标识
DOI:10.1021/acs.jcim.4c00504
摘要

Central nervous system (CNS) drugs have had a significant impact on treating a wide range of neurodegenerative and psychiatric disorders. In recent years, deep learning-based generative models have shown great potential for accelerating drug discovery and improving efficacy. However, specific applications of these techniques in CNS drug discovery have not been widely reported. In this study, we developed the CNSMolGen model, which uses a framework of bidirectional recurrent neural networks (Bi-RNNs) for de novo molecular design of CNS drugs. Results showed that the pretrained model was able to generate more than 90% of completely new molecular structures, which possessed the properties of CNS drug molecules and were synthesizable. In addition, transfer learning was performed on small data sets with specific biological activities to evaluate the potential application of the model for CNS drug optimization. Here, we used drugs against the classical CNS disease target serotonin transporter (SERT) as a fine-tuned data set and generated a focused database against the target protein. The potential biological activities of the generated molecules were verified by using the physics-based induced-fit docking study. The success of this model demonstrates its potential in CNS drug design and optimization, which provides a new impetus for future CNS drug development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奶兔泡泡完成签到,获得积分10
1秒前
CipherSage应助rrrrrrun采纳,获得10
2秒前
agentwang完成签到,获得积分20
2秒前
3秒前
3秒前
无花果应助zhang采纳,获得10
7秒前
8秒前
agentwang发布了新的文献求助30
8秒前
科研通AI6.2应助加菲丰丰采纳,获得30
12秒前
dfgrtbddffh发布了新的文献求助10
12秒前
田様应助方yc采纳,获得10
14秒前
迟迟完成签到 ,获得积分10
19秒前
研友_VZG7GZ应助刘尚琴采纳,获得10
21秒前
23秒前
24秒前
zxer发布了新的文献求助10
29秒前
29秒前
chen发布了新的文献求助10
30秒前
早睡早起身体棒完成签到,获得积分10
33秒前
Li完成签到 ,获得积分10
35秒前
40秒前
华仔应助zxer采纳,获得10
41秒前
lxl完成签到 ,获得积分10
42秒前
忧虑的香岚完成签到 ,获得积分10
43秒前
45秒前
茜茜发布了新的文献求助10
45秒前
情怀应助日月归尘采纳,获得10
45秒前
m30完成签到,获得积分10
53秒前
长情黑夜完成签到,获得积分10
53秒前
拂晓完成签到 ,获得积分10
54秒前
要减肥的冰姬完成签到,获得积分10
54秒前
WCM完成签到,获得积分10
57秒前
57秒前
1分钟前
11应助chen采纳,获得10
1分钟前
冇_完成签到 ,获得积分10
1分钟前
心灵美鑫完成签到 ,获得积分0
1分钟前
1分钟前
1分钟前
Aaron567应助科研通管家采纳,获得20
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Competency Based Human Resource Management 500
How to Develop Robust Scale-up Strategies for Complex Injectable Dosage Forms 450
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5863828
求助须知:如何正确求助?哪些是违规求助? 6395716
关于积分的说明 15649777
捐赠科研通 4978024
什么是DOI,文献DOI怎么找? 2685223
邀请新用户注册赠送积分活动 1628307
关于科研通互助平台的介绍 1585991