亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Effective Depression Diagnostic System Using Speech Signal Analysis Through Deep Learning Methods

副语言 计算机科学 多样性(控制论) 特征(语言学) 人工智能 萧条(经济学) 语音识别 自然语言处理 机器学习 心理学 语言学 哲学 沟通 经济 宏观经济学
作者
Aman Verma,Pooja Jain,Tapan Kumar
出处
期刊:International Journal on Artificial Intelligence Tools [World Scientific]
卷期号:32 (02) 被引量:5
标识
DOI:10.1142/s0218213023400043
摘要

According to the World Health Organization (WHO), depression is one of the largest contributors to the burden of mental and psychological diseases with more than 300 million people being affected; however a huge portion of this does not receive effective diagnosis. Traditional techniques to diagnose depression were based on clinical interviews. These techniques had several limitations based on duration and variety of symptoms, due to which these methods lacked subjectivity and accuracy. Speech is tested to be an important tool in diagnosis as they carry the impression of one’s thoughts and emotions. Speech signals not only carry the linguistic feature but they also contain several other features (paralinguistic features) which can reflect the emotional state of the speaker. The analysis of these features can be used for the diagnosis of depression. With the advancement of artificial techniques and algorithms, they have become popular and are widely used in tasks of pattern recognition and signal processing. These algorithms can easily extract the features from the data and learn to recognize patterns from them. Although these algorithms can successfully recognize emotions, their efficiency is often argued. The main objective of this paper is to propose a strategy to efficiently diagnose depression from the analysis of speech signals. The analysis is performed in the following two ways: First, by considering the male and female emotions combined (gender-neutral) where they are classified into two classes, and second, separately for the male and female emotions (gender-based) for a total of four classes. Experiments conducted show the advantages and shortcomings of paralinguistic features for diagnosis of depression. During experimentation we tested several architectures by efficiently tuning the hyperparameters. For K-nearest neighbors (KNN), best attained accuracy was 86%, whereas for Multi-Layer Perceptron (MLP) architecture the accuracy attained was 87.8%. Best results were obtained from hybrid 1D-Convolutional Neural Networks (CNN) and Long Short Term Memory (LSTM) architecture with the accuracy of 88.33% and 90.07% for gender-neutral and gender-based respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研搬运工完成签到,获得积分10
34秒前
mili发布了新的文献求助10
54秒前
J_W_发布了新的文献求助10
1分钟前
乐乐应助J_W_采纳,获得10
1分钟前
MathFun完成签到 ,获得积分0
2分钟前
今后应助吴1采纳,获得10
2分钟前
2分钟前
上官若男应助程风破浪采纳,获得10
2分钟前
吴1发布了新的文献求助10
2分钟前
2分钟前
xxf1002完成签到 ,获得积分10
2分钟前
木雁之中发布了新的文献求助10
2分钟前
tracyzhang完成签到 ,获得积分10
2分钟前
木雁之中完成签到,获得积分10
2分钟前
科目三应助科研通管家采纳,获得10
3分钟前
万能图书馆应助木雁之中采纳,获得10
3分钟前
高数数完成签到 ,获得积分10
3分钟前
文艺水风完成签到 ,获得积分10
3分钟前
5分钟前
宝贝丫头完成签到 ,获得积分10
5分钟前
Ava应助糊涂的清醒者采纳,获得10
7分钟前
7分钟前
7分钟前
8分钟前
程风破浪发布了新的文献求助10
8分钟前
9分钟前
赵文龙发布了新的文献求助10
9分钟前
老石完成签到 ,获得积分10
9分钟前
期待未来的自己完成签到,获得积分10
10分钟前
光合作用完成签到,获得积分10
11分钟前
程风破浪发布了新的文献求助10
11分钟前
11分钟前
11分钟前
柴yuki完成签到 ,获得积分10
11分钟前
wangwang完成签到 ,获得积分10
12分钟前
Invincible完成签到 ,获得积分10
13分钟前
14分钟前
YY发布了新的文献求助10
14分钟前
YY完成签到,获得积分10
14分钟前
王波完成签到 ,获得积分10
14分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782698
求助须知:如何正确求助?哪些是违规求助? 3328076
关于积分的说明 10234406
捐赠科研通 3043042
什么是DOI,文献DOI怎么找? 1670442
邀请新用户注册赠送积分活动 799684
科研通“疑难数据库(出版商)”最低求助积分说明 758994