A Lightweight Segmented Attention Network for Sleep Staging by Fusing Local Characteristics and Adjacent Information

计算机科学 残余物 循环神经网络 睡眠(系统调用) 人工智能 深度学习 块(置换群论) 特征提取 编码器 模式识别(心理学) 睡眠阶段 人工神经网络 特征(语言学) 脑电图 多导睡眠图 算法 医学 数学 哲学 精神科 操作系统 语言学 几何学
作者
Wei Zhou,Hangyu Zhu,Ning Shen,Hongyu Chen,Cong Fu,Huan Yu,Feng Shu,Chen Chen,Wei Chen
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:31: 238-247 被引量:20
标识
DOI:10.1109/tnsre.2022.3220372
摘要

Sleep staging is the essential step in sleep quality assessment and sleep disorders diagnosis. However, most current automatic sleep staging approaches use recurrent neural networks (RNN), resulting in a relatively large training burden. Moreover, these methods only extract information of the whole epoch or adjacent epochs, ignoring the local signal variations within epoch. To address these issues, a novel deep learning architecture named segmented attention network (SAN) is proposed in this paper. The architecture can be divided into feature extraction (FE) and time sequence encoder (TSE). The FE module consists of multiple multiscale CNN (MMCNN) and residual squeeze and excitation block (SE block). The former extracts features from multiple equal-length EEG segments and the latter reinforced the features. The TSE module based on a multi-head attention mechanism could capture the temporal information in the features extracted by FE module. Noteworthy, in SAN, we replaced the RNN module with a TSE module for temporal learning and made the network faster. The evaluation of the model was performed on two widely used public datasets, Montreal Archive of Sleep Studies (MASS) and Sleep-EDFX, and one clinical dataset from Huashan Hospital of Fudan University, Shanghai, China (HSFU). The proposed model achieved the accuracy of 85.5%, 86.4%, 82.5% on Sleep-EDFX, MASS and HSFU, respectively. The experimental results exhibited favorable performance and consistent improvements of SAN on different datasets in comparison with the state-of-the-art studies. It also proved the necessity of sleep staging by integrating the local characteristics within epochs and adjacent informative features among epochs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lingyan发布了新的文献求助10
1秒前
领导范儿应助专注白昼采纳,获得10
2秒前
4秒前
聪明柚子应助危险份子采纳,获得30
4秒前
量子星尘发布了新的文献求助10
5秒前
莫封叶完成签到,获得积分10
6秒前
惠嘟嘟发布了新的文献求助10
6秒前
7秒前
英姑应助沉默的幻枫采纳,获得10
7秒前
7秒前
辣子鱼完成签到 ,获得积分10
7秒前
优雅莞发布了新的文献求助10
7秒前
kavins凯旋发布了新的文献求助10
7秒前
Yara.H完成签到 ,获得积分10
8秒前
方法发布了新的文献求助10
10秒前
JJ完成签到 ,获得积分10
10秒前
11秒前
11秒前
11秒前
辣子鱼关注了科研通微信公众号
12秒前
CipherSage应助yongtao采纳,获得10
12秒前
Jasmine发布了新的文献求助10
13秒前
Yoisun完成签到,获得积分20
13秒前
14秒前
SciGPT应助sdl采纳,获得10
14秒前
Jiurui发布了新的文献求助10
14秒前
希希完成签到 ,获得积分10
15秒前
15秒前
典雅碧空发布了新的文献求助10
16秒前
安静发布了新的文献求助10
16秒前
lingyan完成签到,获得积分10
17秒前
17秒前
PEKIEOKE发布了新的文献求助30
17秒前
小羊布吉岛完成签到,获得积分10
18秒前
tonyguo完成签到,获得积分10
19秒前
decade完成签到,获得积分10
19秒前
wwwwnr发布了新的文献求助10
19秒前
戏戏戏戏戏戏完成签到,获得积分10
21秒前
ss发布了新的文献求助10
21秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4213290
求助须知:如何正确求助?哪些是违规求助? 3747580
关于积分的说明 11790602
捐赠科研通 3414736
什么是DOI,文献DOI怎么找? 1873963
邀请新用户注册赠送积分活动 928201
科研通“疑难数据库(出版商)”最低求助积分说明 837487