A Lightweight Segmented Attention Network for Sleep Staging by Fusing Local Characteristics and Adjacent Information

计算机科学 残余物 循环神经网络 睡眠(系统调用) 人工智能 深度学习 块(置换群论) 特征提取 编码器 模式识别(心理学) 睡眠阶段 人工神经网络 特征(语言学) 脑电图 多导睡眠图 算法 医学 数学 语言学 哲学 几何学 精神科 操作系统
作者
Wei Zhou,Hangyu Zhu,Ning Shen,Hongyu Chen,Cong Fu,Huan Yu,Feng Shu,Chen Chen,Wei Chen
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:31: 238-247 被引量:20
标识
DOI:10.1109/tnsre.2022.3220372
摘要

Sleep staging is the essential step in sleep quality assessment and sleep disorders diagnosis. However, most current automatic sleep staging approaches use recurrent neural networks (RNN), resulting in a relatively large training burden. Moreover, these methods only extract information of the whole epoch or adjacent epochs, ignoring the local signal variations within epoch. To address these issues, a novel deep learning architecture named segmented attention network (SAN) is proposed in this paper. The architecture can be divided into feature extraction (FE) and time sequence encoder (TSE). The FE module consists of multiple multiscale CNN (MMCNN) and residual squeeze and excitation block (SE block). The former extracts features from multiple equal-length EEG segments and the latter reinforced the features. The TSE module based on a multi-head attention mechanism could capture the temporal information in the features extracted by FE module. Noteworthy, in SAN, we replaced the RNN module with a TSE module for temporal learning and made the network faster. The evaluation of the model was performed on two widely used public datasets, Montreal Archive of Sleep Studies (MASS) and Sleep-EDFX, and one clinical dataset from Huashan Hospital of Fudan University, Shanghai, China (HSFU). The proposed model achieved the accuracy of 85.5%, 86.4%, 82.5% on Sleep-EDFX, MASS and HSFU, respectively. The experimental results exhibited favorable performance and consistent improvements of SAN on different datasets in comparison with the state-of-the-art studies. It also proved the necessity of sleep staging by integrating the local characteristics within epochs and adjacent informative features among epochs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
士心完成签到,获得积分10
1秒前
111发布了新的文献求助10
2秒前
2秒前
2秒前
马户的崛起完成签到,获得积分10
3秒前
早岁发布了新的文献求助10
3秒前
太陽发布了新的文献求助10
4秒前
Phoo完成签到 ,获得积分10
4秒前
赘婿应助共产主义战士采纳,获得10
4秒前
慕青应助幽默的依秋采纳,获得10
5秒前
5秒前
阿Siu完成签到,获得积分10
6秒前
6秒前
huohuo发布了新的文献求助10
6秒前
友好的雪碧完成签到,获得积分10
7秒前
高高发布了新的文献求助10
8秒前
9秒前
10秒前
是的是的发布了新的文献求助10
11秒前
11秒前
Will发布了新的文献求助10
11秒前
健康的幻珊完成签到,获得积分10
11秒前
whuhustwit发布了新的文献求助10
12秒前
13秒前
14秒前
科目三应助郑思雨采纳,获得10
14秒前
丘比特应助高高采纳,获得10
15秒前
liagse发布了新的文献求助20
15秒前
15秒前
黄康发布了新的文献求助10
16秒前
jitanxiang发布了新的文献求助10
16秒前
xixi完成签到,获得积分10
17秒前
Echo发布了新的文献求助30
17秒前
17秒前
18秒前
勤劳的雁凡完成签到,获得积分10
19秒前
王卫完成签到,获得积分10
20秒前
minmin完成签到,获得积分10
20秒前
20秒前
太陽完成签到 ,获得积分10
20秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794881
求助须知:如何正确求助?哪些是违规求助? 3339777
关于积分的说明 10297235
捐赠科研通 3056415
什么是DOI,文献DOI怎么找? 1676988
邀请新用户注册赠送积分活动 805034
科研通“疑难数据库(出版商)”最低求助积分说明 762286