对抗制
领域(数学分析)
计算机科学
域适应
特征(语言学)
人工智能
情绪检测
假新闻
钥匙(锁)
面子(社会学概念)
适应(眼睛)
机器学习
情绪识别
心理学
计算机安全
数学
互联网隐私
语言学
数学分析
哲学
分类器(UML)
神经科学
作者
Arjun Choudhry,Inder Khatri,Arkajyoti Chakraborty,Dinesh Kumar Vishwakarma,Mukesh Prasad
出处
期刊:Cornell University - arXiv
日期:2022-01-01
标识
DOI:10.48550/arxiv.2211.13718
摘要
Recent works on fake news detection have shown the efficacy of using emotions as a feature or emotions-based features for improved performance. However, the impact of these emotion-guided features for fake news detection in cross-domain settings, where we face the problem of domain shift, is still largely unexplored. In this work, we evaluate the impact of emotion-guided features for cross-domain fake news detection, and further propose an emotion-guided, domain-adaptive approach using adversarial learning. We prove the efficacy of emotion-guided models in cross-domain settings for various combinations of source and target datasets from FakeNewsAMT, Celeb, Politifact and Gossipcop datasets.
科研通智能强力驱动
Strongly Powered by AbleSci AI