Layered input GradiNet for image denoising

计算机科学 图像去噪 降噪 人工智能 图像(数学) 计算机视觉 模式识别(心理学)
作者
Shuang Qiao,Jiarui Yang,Tian Zhang,Chenyi Zhao
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:254: 109587-109587 被引量:12
标识
DOI:10.1016/j.knosys.2022.109587
摘要

In image denoising, the recovery of high-frequency regions, such as image edges, directly affects the quality of the denoised images. However, previous deep learning-based denoising methods fail to effectively allocate the transmission of different frequency information and have difficulty giving network attention to high-frequency regions. In this paper, we rethink the fusion of image gradients in a neural network and deeply mine the intrinsic structure of the input image to propose a novel layered input gradient network (LIGN) for image denoising. The core of our network focuses on the features of different frequencies through two networks, which contain several key elements: (a) The input noise image is layered to widen the shallow layer of the network and to promote the hierarchical learning of different types of frequencies. (b) A multiscale feature extraction (MFE) block and information shunting (IS) block are proposed to integrate and separate various frequency features. (c) A gradient network (GradiNet) is designed to extract high-frequency information by network training, and the information is adaptively added to the input of the parallel main network (MainNet) through normalization to obtain high-quality images. Furthermore, we propose a sharpening loss function to enhance the texture details of the denoised image and improve visual quality. Extensive experiments on synthetic and real-world datasets show that the proposed method greatly enhances perceptual visual quality and achieves state-of-the-art performance on both PSNR and SSIM. The source code and pretrained models are available at https://github.com/JerryYann/LIGN . • A layered input gradient network (LIGN) based on a dual U-Net for high-quality image denoising is proposed. • Layered input and sharpening loss greatly improve the perceptual quality of the denoised image. • Multi-scale feature extraction block can capture more semantic information. • LIGN achieves the SoTA performance compared with the latest methods on synthetic and real noise datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助学术蝗虫采纳,获得10
1秒前
研友_LB1rk8完成签到,获得积分10
2秒前
星辰大海应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
冰魂应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
君儿和闪电完成签到 ,获得积分10
4秒前
科研通AI5应助xiaozhao采纳,获得30
4秒前
余味应助小周碎碎念采纳,获得10
5秒前
10秒前
10秒前
NexusExplorer应助Two-Capitals采纳,获得10
11秒前
学术蝗虫发布了新的文献求助10
15秒前
Hello应助靖哥哥采纳,获得10
15秒前
牧童发布了新的文献求助10
16秒前
洛尘完成签到,获得积分10
17秒前
马彦杰完成签到,获得积分10
17秒前
19秒前
自信的九娘完成签到,获得积分10
20秒前
22秒前
X519664508完成签到,获得积分0
22秒前
雪花发布了新的文献求助80
24秒前
可爱的函函应助调皮从云采纳,获得10
24秒前
LL666完成签到 ,获得积分10
24秒前
蛋堡完成签到 ,获得积分10
25秒前
zimo完成签到,获得积分10
27秒前
靖哥哥发布了新的文献求助10
27秒前
27秒前
30秒前
车宇完成签到 ,获得积分10
30秒前
星辰大海应助lvshiwen采纳,获得10
30秒前
若冰完成签到,获得积分10
32秒前
小屁孩完成签到,获得积分10
32秒前
33秒前
流口水完成签到,获得积分10
33秒前
圆圆完成签到 ,获得积分10
34秒前
幽默的友灵完成签到,获得积分10
34秒前
小屁孩发布了新的文献求助10
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779389
求助须知:如何正确求助?哪些是违规求助? 3324920
关于积分的说明 10220490
捐赠科研通 3040099
什么是DOI,文献DOI怎么找? 1668560
邀请新用户注册赠送积分活动 798721
科研通“疑难数据库(出版商)”最低求助积分说明 758522