Using machine learning to identify proteomic and metabolomic signatures of stroke in atrial fibrillation

心房颤动 代谢组学 冲程(发动机) 蛋白质组学 计算生物学 机制(生物学) 医学 内科学 生物信息学 生物化学 基因 生物 机械工程 哲学 认识论 工程类
作者
Fan Zhang,Ying Zhang,Qi Zhou,Yuanqi Shi,Xiangyuan Gao,Siqi Zhai,Haiyu Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:173: 108375-108375 被引量:3
标识
DOI:10.1016/j.compbiomed.2024.108375
摘要

Atrial fibrillation (AF) is a common cardiac arrhythmia, with stroke being its most detrimental comorbidity. The exact mechanism of AF related stroke (AFS) still needs to be explored. In this study, we integrated proteomics and metabolomics platform to explore disordered plasma proteins and metabolites between AF patients and AFS patients. There were 22 up-regulated and 31 down-regulated differentially expressed proteins (DEPs) in AFS plasma samples. Moreover, 63 up-regulated and 51 down-regulated differentially expressed metabolites (DEMs) were discovered in AFS plasma samples. We integrated proteomics and metabolomics based on the topological interactions of DEPs and DEMs, which yielded revealed several related pathways such as arachidonic acid metabolism, serotonergic synapse, purine metabolism, tyrosine metabolism and steroid hormone biosynthesis. We then performed a machine learning model to identify potential biomarkers of stroke in AF. Finally, we selected 6 proteins and 6 metabolites as candidate biomarkers for predicting stroke in AF by random forest, the area under the curve being 0.976. In conclusion, this study provides new perspectives for understanding the progressive mechanisms of AF related stroke and discovering innovative biomarkers for determining the prognosis of stroke in AF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Army616完成签到,获得积分10
1秒前
1秒前
peanuttt发布了新的文献求助30
1秒前
隐形雁玉应助健忘的严青采纳,获得10
2秒前
2秒前
marg发布了新的文献求助10
2秒前
科研通AI2S应助啦啦啦采纳,获得10
3秒前
123完成签到 ,获得积分10
3秒前
杨叔叔发布了新的文献求助200
3秒前
3秒前
整齐芷文完成签到,获得积分20
3秒前
mufeixue发布了新的文献求助10
4秒前
多宝鱼完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
xiangzq完成签到,获得积分10
6秒前
我是老大应助Ruiruirui采纳,获得30
6秒前
6秒前
7秒前
wk_sea完成签到,获得积分10
7秒前
8秒前
9秒前
orixero应助浊人采纳,获得10
9秒前
9秒前
柚子应助sunwei采纳,获得10
10秒前
胡呼呼完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
Lynn发布了新的文献求助10
11秒前
envy完成签到,获得积分10
11秒前
poohpooh发布了新的文献求助10
11秒前
chaoqi完成签到,获得积分10
12秒前
直率的雪晴完成签到,获得积分10
12秒前
灵宝宝完成签到,获得积分10
13秒前
打打应助落寞依珊采纳,获得10
13秒前
科研通AI5应助蓝蓝的腿毛采纳,获得30
13秒前
lieditongxu完成签到,获得积分10
14秒前
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790371
求助须知:如何正确求助?哪些是违规求助? 3335077
关于积分的说明 10273337
捐赠科研通 3051539
什么是DOI,文献DOI怎么找? 1674723
邀请新用户注册赠送积分活动 802757
科研通“疑难数据库(出版商)”最低求助积分说明 760853