已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Audio deepfakes: A survey

计算机科学 卷积神经网络 光学(聚焦) 深度学习 钥匙(锁) 人工智能 对抗制 生成语法 数据科学 物理 计算机安全 光学
作者
Zahra Khanjani,Gabrielle Watson,Vandana P. Janeja
出处
期刊:Frontiers in big data [Frontiers Media SA]
卷期号:5 被引量:33
标识
DOI:10.3389/fdata.2022.1001063
摘要

A deepfake is content or material that is synthetically generated or manipulated using artificial intelligence (AI) methods, to be passed off as real and can include audio, video, image, and text synthesis. The key difference between manual editing and deepfakes is that deepfakes are AI generated or AI manipulated and closely resemble authentic artifacts. In some cases, deepfakes can be fabricated using AI-generated content in its entirety. Deepfakes have started to have a major impact on society with more generation mechanisms emerging everyday. This article makes a contribution in understanding the landscape of deepfakes, and their detection and generation methods. We evaluate various categories of deepfakes especially in audio. The purpose of this survey is to provide readers with a deeper understanding of (1) different deepfake categories; (2) how they could be created and detected; (3) more specifically, how audio deepfakes are created and detected in more detail, which is the main focus of this paper. We found that generative adversarial networks (GANs), convolutional neural networks (CNNs), and deep neural networks (DNNs) are common ways of creating and detecting deepfakes. In our evaluation of over 150 methods, we found that the majority of the focus is on video deepfakes, and, in particular, the generation of video deepfakes. We found that for text deepfakes, there are more generation methods but very few robust methods for detection, including fake news detection, which has become a controversial area of research because of the potential heavy overlaps with human generation of fake content. Our study reveals a clear need to research audio deepfakes and particularly detection of audio deepfakes. This survey has been conducted with a different perspective, compared to existing survey papers that mostly focus on just video and image deepfakes. This survey mainly focuses on audio deepfakes that are overlooked in most of the existing surveys. This article's most important contribution is to critically analyze and provide a unique source of audio deepfake research, mostly ranging from 2016 to 2021. To the best of our knowledge, this is the first survey focusing on audio deepfakes generation and detection in English.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
疯狂喵完成签到 ,获得积分10
刚刚
斜阳完成签到 ,获得积分10
刚刚
cxting发布了新的文献求助10
1秒前
苗条的小蜜蜂完成签到 ,获得积分10
1秒前
赘婿应助给好评采纳,获得10
3秒前
kuma完成签到 ,获得积分10
3秒前
ly613发布了新的文献求助10
3秒前
林鼎铭发布了新的文献求助10
4秒前
6秒前
swan完成签到 ,获得积分10
9秒前
zbx完成签到,获得积分10
9秒前
10秒前
无误发布了新的文献求助10
10秒前
13秒前
16秒前
17秒前
安详凡完成签到 ,获得积分10
17秒前
可乐发布了新的文献求助10
20秒前
林小鹿完成签到,获得积分10
24秒前
24秒前
爆米花应助积极的天问采纳,获得10
25秒前
xx完成签到 ,获得积分10
26秒前
qian完成签到 ,获得积分10
26秒前
31秒前
polite完成签到 ,获得积分10
32秒前
WGR12138完成签到 ,获得积分10
35秒前
Li完成签到 ,获得积分10
36秒前
36秒前
heihei完成签到,获得积分10
36秒前
给好评完成签到,获得积分10
37秒前
小咸鱼完成签到 ,获得积分10
40秒前
给好评发布了新的文献求助10
40秒前
RWcreator完成签到 ,获得积分10
41秒前
43秒前
现实的邴发布了新的文献求助10
44秒前
44秒前
46秒前
47秒前
浮游应助给好评采纳,获得10
47秒前
黄sir发布了新的文献求助10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5432080
求助须知:如何正确求助?哪些是违规求助? 4544872
关于积分的说明 14194391
捐赠科研通 4464085
什么是DOI,文献DOI怎么找? 2446962
邀请新用户注册赠送积分活动 1438286
关于科研通互助平台的介绍 1415085