Machine learning for individualized prediction of hepatocellular carcinoma development after the eradication of hepatitis C virus with antivirals

医学 队列 肝细胞癌 比例危险模型 随机森林 机器学习 危险系数 支持向量机 判别式 人工智能 肿瘤科 内科学 计算机科学 置信区间
作者
Tatsuya Minami,Masaya Sato,Hidenori Toyoda,Satoshi Yasuda,Tomoharu Yamada,T. Nakatsuka,Kenichiro Enooku,Hayato Nakagawa,Hidetaka Fujinaga,Masashi Izumiya,Yasuo Tanaka,Motoyuki Otsuka,Takamasa Ohki,Masahiro Arai,Yoshinari Asaoka,Atsushi Tanaka,Kiyomi Yasuda,Hideaki Miura,Itsuro Ogata,Toshiro Kamoshida
出处
期刊:Journal of Hepatology [Elsevier BV]
卷期号:79 (4): 1006-1014 被引量:21
标识
DOI:10.1016/j.jhep.2023.05.042
摘要

Accurate risk stratification for hepatocellular carcinoma (HCC) after achieving a sustained viral response (SVR) is necessary for optimal surveillance. We aimed to develop and validate a machine learning (ML) model to predict the risk of HCC after achieving an SVR in individual patients.In this multicenter cohort study, 1742 patients with chronic hepatitis C who achieved an SVR were enrolled. Five ML models were developed including DeepSurv, gradient boosting survival analysis, random survival forest (RSF), survival support vector machine, and a conventional Cox proportional hazard model. Model performance was evaluated using Harrel' c-index and was externally validated in an independent cohort (977 patients).During the mean observation period of 5.4 years, 122 patients developed HCC (83 in the derivation cohort and 39 in the external validation cohort). The RSF model showed the best discrimination ability using seven parameters at the achievement of an SVR with a c-index of 0.839 in the external validation cohort and a high discriminative ability when the patients were categorized into three risk groups (P <0.001). Furthermore, this RSF model enabled the generation of an individualized predictive curve for HCC occurrence for each patient with an app available online.We developed and externally validated an RSF model with good predictive performance for the risk of HCC after an SVR. The application of this novel model is available on the website. This model could provide the data to consider an effective surveillance method. Further studies are needed to make recommendations for surveillance policies tailored to the medical situation in each country.A novel prediction model for HCC occurrence in patients after hepatitis C virus eradication was developed using machine learning algorithms. This model, using seven commonly measured parameters, has been shown to have a good predictive ability for HCC development and could provide a personalized surveillance system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
耿昭完成签到,获得积分10
3秒前
8秒前
9秒前
9秒前
灵巧的嚣发布了新的文献求助100
10秒前
苑阿宇完成签到 ,获得积分10
11秒前
李xue发布了新的文献求助10
13秒前
16秒前
搜集达人应助jgpiao采纳,获得10
19秒前
19秒前
情怀应助Nanami_ii采纳,获得10
21秒前
猪猪侠发布了新的文献求助10
22秒前
24秒前
zhuzhu完成签到,获得积分20
25秒前
25秒前
26秒前
一只半夏发布了新的文献求助10
26秒前
思源应助光影采纳,获得10
27秒前
丘比特应助李xue采纳,获得10
27秒前
zhuzhu发布了新的文献求助10
27秒前
Nidhogg完成签到,获得积分10
29秒前
29秒前
NexusExplorer应助读书的时候采纳,获得10
29秒前
实验室同学完成签到,获得积分10
31秒前
AJ完成签到 ,获得积分10
31秒前
情怀应助11采纳,获得10
32秒前
zarahn完成签到,获得积分10
33秒前
nihao应助科研通管家采纳,获得10
34秒前
小马甲应助科研通管家采纳,获得20
34秒前
bkagyin应助科研通管家采纳,获得10
34秒前
白宝箱应助科研通管家采纳,获得10
34秒前
烟花应助科研通管家采纳,获得10
34秒前
ding应助科研通管家采纳,获得10
34秒前
赘婿应助科研通管家采纳,获得10
35秒前
大个应助科研通管家采纳,获得10
35秒前
小蘑菇应助科研通管家采纳,获得10
35秒前
Owen应助科研通管家采纳,获得10
35秒前
赘婿应助科研通管家采纳,获得10
35秒前
nihao应助科研通管家采纳,获得10
35秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
Tasteful Old Age:The Identity of the Aged Middle-Class, Nursing Home Tours, and Marketized Eldercare in China 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4084201
求助须知:如何正确求助?哪些是违规求助? 3623337
关于积分的说明 11494125
捐赠科研通 3337837
什么是DOI,文献DOI怎么找? 1835030
邀请新用户注册赠送积分活动 903677
科研通“疑难数据库(出版商)”最低求助积分说明 821806