已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Performance of artificial intelligence for the detection of pathological myopia from colour fundus images: a systematic review and meta-analysis

荟萃分析 医学 系统回顾 接收机工作特性 诊断优势比 梅德林 出版偏见 科克伦图书馆 验光服务 眼科 病理 内科学 政治学 法学
作者
Jai Prashar,Nicole Tay
出处
期刊:Eye [Springer Nature]
卷期号:38 (2): 303-314 被引量:7
标识
DOI:10.1038/s41433-023-02680-z
摘要

Abstract Background Pathological myopia (PM) is a major cause of worldwide blindness and represents a serious threat to eye health globally. Artificial intelligence (AI)-based methods are gaining traction in ophthalmology as highly sensitive and specific tools for screening and diagnosis of many eye diseases. However, there is currently a lack of high-quality evidence for their use in the diagnosis of PM. Methods A systematic review and meta-analysis of studies evaluating the diagnostic performance of AI-based tools in PM was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidance. Five electronic databases were searched, results were assessed against the inclusion criteria and a quality assessment was conducted for included studies. Model sensitivity and specificity were pooled using the DerSimonian and Laird (random-effects) model. Subgroup analysis and meta-regression were performed. Results Of 1021 citations identified, 17 studies were included in the systematic review and 11 studies, evaluating 165,787 eyes, were included in the meta-analysis. The area under the summary receiver operator curve (SROC) was 0.9905. The pooled sensitivity was 95.9% [95.5%-96.2%], and the overall pooled specificity was 96.5% [96.3%-96.6%]. The pooled diagnostic odds ratio (DOR) for detection of PM was 841.26 [418.37–1691.61]. Conclusions This systematic review and meta-analysis provides robust early evidence that AI-based, particularly deep-learning based, diagnostic tools are a highly specific and sensitive modality for the detection of PM. There is potential for such tools to be incorporated into ophthalmic public health screening programmes, particularly in resource-poor areas with a substantial prevalence of high myopia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
dada完成签到 ,获得积分10
7秒前
镁铝硅磷完成签到,获得积分10
8秒前
自由完成签到 ,获得积分10
9秒前
刘喵喵发布了新的文献求助10
10秒前
12秒前
wwww完成签到 ,获得积分10
12秒前
大大完成签到 ,获得积分10
15秒前
MF发布了新的文献求助10
16秒前
@∞完成签到 ,获得积分10
17秒前
烟花应助畅快的香菱采纳,获得10
17秒前
红枫没有微雨怜完成签到 ,获得积分10
17秒前
英勇海完成签到 ,获得积分10
19秒前
天才小熊猫完成签到,获得积分10
19秒前
Arvilzzz完成签到,获得积分10
22秒前
22秒前
鲤鱼幼翠发布了新的文献求助10
23秒前
JacekYu完成签到 ,获得积分10
24秒前
24秒前
24秒前
Arvilzzz发布了新的文献求助10
25秒前
William_l_c完成签到,获得积分10
25秒前
充电宝应助MF采纳,获得10
25秒前
8R60d8应助Thing采纳,获得10
26秒前
bc应助Thing采纳,获得30
26秒前
急诊守夜人完成签到 ,获得积分10
27秒前
sss完成签到 ,获得积分10
28秒前
禾斗石开发布了新的文献求助10
29秒前
Owen应助cccj采纳,获得10
29秒前
Nn发布了新的文献求助10
30秒前
31秒前
哈哈完成签到,获得积分10
34秒前
恋阙谙完成签到,获得积分10
34秒前
mashichuang发布了新的文献求助10
35秒前
羞涩的盼山完成签到 ,获得积分10
37秒前
科研通AI5应助恋阙谙采纳,获得10
38秒前
miemie完成签到,获得积分10
40秒前
阳光青文完成签到 ,获得积分10
40秒前
黑巧的融化完成签到 ,获得积分10
40秒前
Thing完成签到,获得积分10
41秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815663
求助须知:如何正确求助?哪些是违规求助? 3359277
关于积分的说明 10401860
捐赠科研通 3077021
什么是DOI,文献DOI怎么找? 1690059
邀请新用户注册赠送积分活动 813650
科研通“疑难数据库(出版商)”最低求助积分说明 767694