Hybrid CNN-Transformer model for medical image segmentation with pyramid convolution and multi-layer perceptron

计算机科学 卷积神经网络 人工智能 模式识别(心理学) 分割 变压器 核(代数) 特征提取 数学 量子力学 组合数学 物理 电压
作者
Xiaowei Liu,Yikun Hu,Jianguo Chen
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:86: 105331-105331 被引量:35
标识
DOI:10.1016/j.bspc.2023.105331
摘要

Vision Transformer (ViT) has emerged as a potential alternative to convolutional neural networks for large datasets. However, applying ViT directly to medical image segmentation is challenging due to its lack of induction bias, which requires a large number of high-quality annotated medical images for effective model training. Recent studies have discovered that, in addition to the increased model capacity and generalization resulting from the lack of induction bias, the excellent performance of Transformer can also be attributed to its large receptive field. In this paper, we propose a U-shaped medical image segmentation model that combines large kernel convolutions with Transformers. Specifically, we construct a basic Transformer unit using pyramidal convolution modules with multi-scale kernels and multi-layer perceptron. In the pyramid convolution module, we employ grouped convolution to reduce parameter and computational complexity while utilizing multi-scale large kernel attention as a foundation for more efficient feature extraction. For different types of grouping, different sizes of convolutions are used to enhance the extraction of features with multiple receptive fields. To optimize the extracted features from the encoder, the U-shaped model integrates a variant of the pyramidal convolutional module into the skip connections. This variant utilizes multi-scale large kernel convolutional attention based on channel splitting. The incorporation of this variant enables efficient refinement of the feature representations within the skip connections. Through extensive comparisons on multi-modal medical image datasets, our model outperforms state-of-the-art methods across various evaluation metrics, with notable superiority observed on small-scale medical datasets. Our research findings suggest that the combination of large kernel convolutions and Transformer models introduces an advantageous inductive bias, resulting in enhanced performance specifically for small-scale medical image datasets. To facilitate accessibility, we have made our code openly accessible on our GitHub repository, which can be found at https://github.com/medical-images-process/CNN-Transformer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zdl应助tetrakis采纳,获得30
1秒前
123完成签到,获得积分10
1秒前
1秒前
2秒前
amberzyc应助小狮子采纳,获得10
2秒前
3秒前
科目三应助haixia采纳,获得10
3秒前
Wang发布了新的文献求助10
4秒前
123发布了新的文献求助10
5秒前
August给August的求助进行了留言
5秒前
无花果应助一问三不栀采纳,获得10
5秒前
6秒前
6秒前
7秒前
大个应助肥波采纳,获得10
7秒前
7秒前
李昕123发布了新的文献求助10
7秒前
lyt发布了新的文献求助10
7秒前
8秒前
闻晓晴发布了新的文献求助10
10秒前
gxg完成签到,获得积分10
11秒前
YAFD完成签到,获得积分10
12秒前
13秒前
水文新绿微应助独行独行采纳,获得20
13秒前
13秒前
13秒前
吃葡萄皮发布了新的文献求助30
14秒前
14秒前
14秒前
16秒前
yolo完成签到,获得积分10
16秒前
Akim应助Wang采纳,获得10
17秒前
17秒前
17秒前
刘窜疯发布了新的文献求助10
17秒前
哈哈发布了新的文献求助10
19秒前
19秒前
HY发布了新的文献求助10
20秒前
20秒前
Lucas应助小菜采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5394134
求助须知:如何正确求助?哪些是违规求助? 4515426
关于积分的说明 14053922
捐赠科研通 4426623
什么是DOI,文献DOI怎么找? 2431456
邀请新用户注册赠送积分活动 1423562
关于科研通互助平台的介绍 1402541