Electric eel foraging optimization: A new bio-inspired optimizer for engineering applications

觅食 测试套件 计算机科学 元启发式 进化算法 布谷鸟搜索 进化计算 群体行为 航程(航空) 测试用例 粒子群优化 一套 数学优化 计算 人工智能 机器学习 模拟 算法 生态学 工程类 数学 航空航天工程 回归分析 历史 生物 考古
作者
Weiguo Zhao,Liying Wang,Zhenxing Zhang,Honggang Fan,Jiajie Zhang,Seyedali Mirjalili,Nima Khodadadi,Qingjiao Cao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122200-122200 被引量:94
标识
DOI:10.1016/j.eswa.2023.122200
摘要

An original swarm-based, bio-inspired metaheuristic algorithm, named electric eel foraging optimization (EEFO) is developed and tested in this work. EEFO draws inspiration from the intelligent group foraging behaviors exhibited by electric eels in nature. The algorithm mathematically models four key foraging behaviors: interaction, resting, hunting, and migration, to provide both exploration and exploitation during the optimization process. In addition, an energy factor is developed to manage the transition from global search to local search and the balance between exploration and exploitation in the search space. EEFO reveals various foraging patterns based on the foraging characteristics of electric eels. In this study, such dynamic patterns and behaviors are mathematically imitated to design an effective global optimizer. The effectiveness of EEFO is verified through a comparison with 12 other algorithms using the 23 test functions, Congress on Evolutionary Computation 2011 (CEC2011) test suite, and Congress on Evolutionary Computation 2017 (CEC2017) test suite. The experimental results reveal that the EEFO algorithm outperforms the other algorithms for 87% of the 23 test functions and 59% of the CEC2011 test suite, as well as for 66%, 52% and 45% of the CEC2017 test suite with 10, 30, and 50 dimensions, respectively. The applicability of EEFO is comprehensively tested with 10 engineering problems and the application of hydropower station sluice opening control under accident tripping conditions. The results demonstrate the superiority and promising prospects of EEFO when solving a wide range of challenging real-world problems. Overall, the proposed algorithm showcases exceptional performance in terms of exploitation, exploration, the ability to balance exploitation and exploration, and avoiding local optima. EEFO exhibits remarkable competitiveness, particularly in optimization problems that involve unimodal characteristics and numerous constraints and variables. The source code of EEFO is publicly available at https://ww2.mathworks.cn/matlabcentral/fileexchange/153461-electric-eel-foraging-optimization-eefo.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
难过板栗应助热情越彬采纳,获得40
刚刚
研友_VZG7GZ应助NN采纳,获得30
刚刚
小马甲应助破忒头采纳,获得30
1秒前
小马甲应助冰美式采纳,获得10
3秒前
蒲草1004发布了新的文献求助30
3秒前
mmmm发布了新的文献求助30
3秒前
科研通AI5应助luca采纳,获得10
3秒前
格非完成签到,获得积分10
4秒前
4秒前
变形金刚完成签到,获得积分10
5秒前
5秒前
FIN发布了新的文献求助50
6秒前
7秒前
ozzz发布了新的文献求助10
7秒前
FashionBoy应助阳光以筠采纳,获得10
8秒前
8秒前
9秒前
倪倪发布了新的文献求助10
9秒前
bellis完成签到,获得积分10
10秒前
11秒前
11秒前
13秒前
科研通AI5应助luca采纳,获得10
13秒前
13秒前
15秒前
大空翼发布了新的文献求助10
15秒前
17秒前
仔仔大叔完成签到 ,获得积分10
18秒前
背后的华发布了新的文献求助10
18秒前
18秒前
18秒前
快乐小刘发布了新的文献求助10
19秒前
20秒前
科研通AI5应助大空翼采纳,获得80
21秒前
21秒前
仔仔大叔关注了科研通微信公众号
21秒前
包子发布了新的文献求助10
21秒前
kate发布了新的文献求助10
22秒前
许甜甜鸭应助luca采纳,获得30
22秒前
科研通AI5应助Albert采纳,获得10
23秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Limes XXIII Sonderband 4 / II Proceedings of the 23rd International Congress of Roman Frontier Studies Ingolstadt 2015 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829234
求助须知:如何正确求助?哪些是违规求助? 3371936
关于积分的说明 10469766
捐赠科研通 3091535
什么是DOI,文献DOI怎么找? 1701173
邀请新用户注册赠送积分活动 818199
科研通“疑难数据库(出版商)”最低求助积分说明 770765