A Secure and Fair Federated Learning Framework Based on Consensus Incentive Mechanism

激励 机制(生物学) 计算机科学 微观经济学 经济 认识论 哲学
作者
Feng Zhu,Feng Hu,Yanchao Zhao,Bing Chen,Xiaoyang Tan
出处
期刊:Mathematics [Multidisciplinary Digital Publishing Institute]
卷期号:12 (19): 3068-3068
标识
DOI:10.3390/math12193068
摘要

Federated learning facilitates collaborative computation among multiple participants while safeguarding user privacy. However, current federated learning algorithms operate under the assumption that all participants are trustworthy and their systems are secure. Nonetheless, real-world scenarios present several challenges: (1) Malicious clients disrupt federated learning through model poisoning and data poisoning attacks. Although some research has proposed secure aggregation methods to address this issue, many methods have inherent limitations. (2) Clients may refuse or passively participate in the training process due to considerations of self-interest, and may even interfere with the training process due to competitive relationships. To overcome these obstacles, we have devised a reliable federated framework aimed at ensuring secure computing throughout the entirety of federated task processes. Initially, we propose a method for detecting malicious models to safeguard the integrity of model aggregation. Furthermore, we have proposed a fair contribution assessment method and awarded the right to write blocks to the creator of the optimal model, ensuring the active participation of participants in both local training and model aggregation. Finally, we establish a computational framework grounded in blockchain and smart contracts to uphold the integrity and fairness of federated tasks. To assess the efficacy of our framework, we conduct simulations involving various types of client attacks and contribution assessment scenarios using multiple open-source datasets. Results from these experiments demonstrate that our framework effectively ensures the credibility of federated tasks while achieving impartial evaluation of client contributions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
高高完成签到,获得积分10
1秒前
尛破孩发布了新的文献求助10
1秒前
KKK发布了新的文献求助10
3秒前
猫小猪发布了新的文献求助10
4秒前
波斯春笋发布了新的文献求助10
4秒前
泡沫完成签到,获得积分10
4秒前
科研通AI5应助阿文采纳,获得10
5秒前
6秒前
SC30发布了新的文献求助10
7秒前
liekkhc发布了新的文献求助20
8秒前
李敬语发布了新的文献求助10
8秒前
无心风云应助按揭采纳,获得10
11秒前
12秒前
vdfr完成签到,获得积分10
13秒前
13秒前
小麦子完成签到,获得积分10
13秒前
田様应助xinggui采纳,获得10
14秒前
hjkluo完成签到,获得积分10
14秒前
李健的粉丝团团长应助Sun采纳,获得10
15秒前
所所应助酷丫采纳,获得10
16秒前
16秒前
19秒前
yaonuliwa完成签到,获得积分10
19秒前
NexusExplorer应助1282941496采纳,获得10
20秒前
丘比特应助久啊时效内采纳,获得10
20秒前
wwrjj完成签到,获得积分10
22秒前
研友_VZG7GZ应助累狗刘采纳,获得10
22秒前
HY完成签到,获得积分10
22秒前
小二郎应助我的小宝贝采纳,获得10
22秒前
23秒前
YIFGU完成签到 ,获得积分10
23秒前
24秒前
落日余晖完成签到,获得积分10
24秒前
JM完成签到,获得积分10
25秒前
Sun完成签到,获得积分20
26秒前
26秒前
细心的梦芝完成签到,获得积分10
28秒前
山山发布了新的文献求助10
28秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Moisture state and volatile flavor behavior characterization of Naematelia aurantialba during postharvest in modified atmosphere packaging storage after treated with ultraviolet radiation C 400
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3810963
求助须知:如何正确求助?哪些是违规求助? 3355397
关于积分的说明 10375834
捐赠科研通 3072177
什么是DOI,文献DOI怎么找? 1687322
邀请新用户注册赠送积分活动 811541
科研通“疑难数据库(出版商)”最低求助积分说明 766677