Orthogonality Matters: Invariant Time Series Representation for Out-of-distribution Classification

正交性 不变(物理) 系列(地层学) 代表(政治) 计算机科学 数学 地质学 几何学 古生物学 政治 政治学 法学 数学物理
作者
Ruize Shi,Hong Huang,Kehan Yin,Wei Zhou,Hai Jin
标识
DOI:10.1145/3637528.3671768
摘要

Previous works for time series classification tend to assume that both the training and testing sets originate from the same distribution. This oversimplification deviates from the complexity of reality and makes it challenging to generalize methods to out-of-distribution (OOD) time series data. Currently, there are limited works focusing on time series OOD generalization, and they typically disentangle time series into domain-agnostic and domain-specific features and design tasks to intensify the distinction between the two. However, previous models purportedly yielding domain-agnostic features continue to harbor domain-specific information, thereby diminishing their adaptability to OOD data. To address this gap, we introduce a novel model called Invariant Time Series Representation (ITSR). ITSR achieves a learnable orthogonal decomposition of time series using two sets of orthogonal axes. In detail, ITSR projects time series onto these two sets of axes separately and obtains mutually orthogonal invariant features and relevant features. ITSR theoretically ensures low similarity between these two features and further incorporates various tasks to optimize them. Furthermore, we explore the benefits of preserving orthogonality between invariant and relevant features for OOD time series classification in theory. The results on four real-world datasets underscore the superiority of ITSR over state-of-the-art methods and demonstrate the critical role of maintaining orthogonality between invariant and relevant features. Our code is available at https://github.com/CGCL-codes/ITSR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Leeon完成签到,获得积分10
1秒前
lisier发布了新的文献求助10
2秒前
echo发布了新的文献求助10
2秒前
牧紊完成签到 ,获得积分10
3秒前
Laniakea发布了新的文献求助10
4秒前
活泼溪流完成签到,获得积分10
4秒前
BIN完成签到,获得积分20
4秒前
aqqqqq完成签到,获得积分10
5秒前
共享精神应助不敢装睡采纳,获得10
5秒前
6秒前
ZZY完成签到,获得积分10
7秒前
7秒前
动听从寒完成签到,获得积分20
8秒前
努力的小明明完成签到,获得积分10
8秒前
pluto应助白日梦想家采纳,获得10
9秒前
9秒前
今后应助Supreme采纳,获得10
9秒前
专炸油条完成签到 ,获得积分10
9秒前
9秒前
lisier完成签到,获得积分10
10秒前
CodeCraft应助知还采纳,获得10
10秒前
随遇而安给YY的求助进行了留言
10秒前
10秒前
上官若男应助科研小废废采纳,获得10
12秒前
科研通AI5应助acc采纳,获得10
12秒前
科研通AI5应助舒适路人采纳,获得10
12秒前
13秒前
13秒前
万能图书馆应助神勇初瑶采纳,获得30
13秒前
kk关注了科研通微信公众号
13秒前
13秒前
Leach发布了新的文献求助10
14秒前
李爱国应助wind采纳,获得10
14秒前
deepast完成签到,获得积分10
14秒前
mzhnx发布了新的文献求助30
15秒前
酷波er应助ehinqz采纳,获得10
15秒前
科研通AI5应助starkisses采纳,获得30
16秒前
16秒前
16秒前
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786101
求助须知:如何正确求助?哪些是违规求助? 3331636
关于积分的说明 10251844
捐赠科研通 3046973
什么是DOI,文献DOI怎么找? 1672320
邀请新用户注册赠送积分活动 801243
科研通“疑难数据库(出版商)”最低求助积分说明 760059