Multimodal dynamic fusion framework: Multilevel feature fusion guided by prompts

计算机科学 融合 特征(语言学) 人工智能 机器学习 模式识别(心理学) 数据挖掘 哲学 语言学
作者
Lei Pan,H. Wu
出处
期刊:Expert Systems [Wiley]
卷期号:41 (11)
标识
DOI:10.1111/exsy.13668
摘要

Abstract With the progressive augmentation of parameters in multimodal models, to optimize computational efficiency, some studies have adopted the approach of fine‐tuning the unimodal pre‐training model to achieve multimodal fusion tasks. However, these methods tend to rely solely on simplistic or singular fusion strategies, thereby neglecting more flexible fusion approaches. Moreover, existing methods prioritize the integration of modality features containing highly semantic information, often overlooking the influence of fusing low‐level features on the outcomes. Therefore, this study introduces an innovative approach named multilevel feature fusion guided by prompts (MFF‐GP), a multimodal dynamic fusion framework. It guides the dynamic neural network by prompt vectors to dynamically select the suitable fusion network for each hierarchical feature of the unimodal pre‐training model. This method improves the interactions between multiple modalities and promotes a more efficient fusion of features across them. Extensive experiments on the UPMC Food 101, SNLI‐VE and MM‐IMDB datasets demonstrate that with only a few trainable parameters, MFF‐GP achieves significant accuracy improvements compared to a newly designed PMF based on fine‐tuning—specifically, an accuracy improvement of 2.15% on the UPMC Food 101 dataset and 0.82% on the SNLI‐VE dataset. Further study of the results reveals that increasing the diversity of interactions between distinct modalities is critical and delivers significant performance improvements. Furthermore, for certain multimodal tasks, focusing on the low‐level features is beneficial for modality integration. Our implementation is available at: https://github.com/whq2024/MFF-GP .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助YOURINZ采纳,获得10
刚刚
刚刚
刚刚
1秒前
1秒前
64658应助罗柠七采纳,获得10
1秒前
BIGDUCK发布了新的文献求助10
3秒前
3秒前
爆米花应助星空之下ssr采纳,获得200
4秒前
yxj199837完成签到 ,获得积分10
4秒前
月亮发布了新的文献求助10
5秒前
5秒前
111完成签到 ,获得积分10
6秒前
李卓发布了新的文献求助10
6秒前
谦让的牛排完成签到 ,获得积分10
6秒前
吉文彬发布了新的文献求助10
6秒前
科研通AI5应助端庄毛巾采纳,获得10
7秒前
9秒前
Sicily发布了新的文献求助30
10秒前
泡芙1207发布了新的文献求助10
10秒前
卫界宇发布了新的文献求助10
14秒前
稳重的紫易完成签到,获得积分10
14秒前
JamesPei应助林知鲸落采纳,获得10
14秒前
结实的蘑菇完成签到 ,获得积分10
15秒前
15秒前
15秒前
15秒前
泡芙1207完成签到,获得积分10
16秒前
年轻的怀蕊完成签到 ,获得积分10
17秒前
龙虾发票完成签到,获得积分10
17秒前
18秒前
tanhaowen完成签到 ,获得积分10
18秒前
额狐狸发布了新的文献求助10
20秒前
ayuan发布了新的文献求助10
21秒前
foshuo发布了新的文献求助10
21秒前
斯文一笑完成签到 ,获得积分10
22秒前
怕黑的傲蕾完成签到,获得积分10
23秒前
23秒前
YOURINZ发布了新的文献求助10
23秒前
23秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5133387
求助须知:如何正确求助?哪些是违规求助? 4334546
关于积分的说明 13504004
捐赠科研通 4171455
什么是DOI,文献DOI怎么找? 2287231
邀请新用户注册赠送积分活动 1288098
关于科研通互助平台的介绍 1228932