Radiomics meets transformers: A novel approach to tumor segmentation and classification in mammography for breast cancer

人工智能 分割 模式识别(心理学) 计算机科学 乳腺摄影术 数字乳腺摄影术 图像分割 乳腺癌 医学 癌症 内科学
作者
Mohamed J. Saadh,Qusay Mohammed Hussain,Rafid Jihad Albadr,Hardik Doshi,M M Rekha,Mayank Kundlas,Achira Pal,Jasur Rizaev,Waam Mohammed Taher,Mariem Alwan,Mahmod Jasem Jawad,Ali M. Ali Al-Nuaimi,Bagher Farhood
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
标识
DOI:10.1177/08953996251351624
摘要

ObjectiveThis study aimed to develop a robust framework for breast cancer diagnosis by integrating advanced segmentation and classification approaches. Transformer-based and U-Net segmentation models were combined with radiomic feature extraction and machine learning classifiers to improve segmentation precision and classification accuracy in mammographic images.Materials and MethodsA multi-center dataset of 8000 mammograms (4200 normal, 3800 abnormal) was used. Segmentation was performed using Transformer-based and U-Net models, evaluated through Dice Coefficient (DSC), Intersection over Union (IoU), Hausdorff Distance (HD95), and Pixel-Wise Accuracy. Radiomic features were extracted from segmented masks, with Recursive Feature Elimination (RFE) and Analysis of Variance (ANOVA) employed to select significant features. Classifiers including Logistic Regression, XGBoost, CatBoost, and a Stacking Ensemble model were applied to classify tumors into benign or malignant. Classification performance was assessed using accuracy, sensitivity, F1 score, and AUC-ROC. SHAP analysis validated feature importance, and Q-value heatmaps evaluated statistical significance.ResultsThe Transformer-based model achieved superior segmentation results with DSC (0.94 ± 0.01 training, 0.92 ± 0.02 test), IoU (0.91 ± 0.01 training, 0.89 ± 0.02 test), HD95 (3.0 ± 0.3 mm training, 3.3 ± 0.4 mm test), and Pixel-Wise Accuracy (0.96 ± 0.01 training, 0.94 ± 0.02 test), consistently outperforming U-Net across all metrics. For classification, Transformer-segmented features with the Stacking Ensemble achieved the highest test results: 93% accuracy, 92% sensitivity, 93% F1 score, and 95% AUC. U-Net-segmented features achieved lower metrics, with the best test accuracy at 84%. SHAP analysis confirmed the importance of features like Gray-Level Non-Uniformity and Zone Entropy.ConclusionThis study demonstrates the superiority of Transformer-based segmentation integrated with radiomic feature selection and robust classification models. The framework provides a precise and interpretable solution for breast cancer diagnosis, with potential for scalability to 3D imaging and multimodal datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三块石头完成签到,获得积分10
刚刚
故意的灯泡完成签到,获得积分10
1秒前
夜月残阳完成签到,获得积分10
1秒前
imkhun1021发布了新的文献求助10
1秒前
Cyd发布了新的文献求助10
2秒前
斯文败类应助王广发得得采纳,获得10
3秒前
核桃发布了新的文献求助30
3秒前
桐桐应助小七2022采纳,获得10
3秒前
小马甲应助Dreamhappy采纳,获得10
3秒前
稀饭发布了新的文献求助10
3秒前
赘婿应助暗栀采纳,获得10
3秒前
在水一方应助大分子采纳,获得10
4秒前
白衣卿相发布了新的文献求助50
4秒前
虚心的万恶完成签到,获得积分10
4秒前
4秒前
season完成签到,获得积分10
4秒前
澎鱼盐完成签到,获得积分10
4秒前
江湖笑完成签到,获得积分10
5秒前
linshunan完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
5秒前
观因发布了新的文献求助30
6秒前
青青发布了新的文献求助30
6秒前
6秒前
柏林寒冬应助成就的怀蕾采纳,获得10
7秒前
温柔的柠檬完成签到 ,获得积分10
7秒前
Jasper应助蚌壳采纳,获得10
8秒前
小马甲应助masirthu采纳,获得10
8秒前
123完成签到,获得积分10
8秒前
乐观无心发布了新的文献求助10
8秒前
linshunan发布了新的文献求助10
9秒前
张靖完成签到 ,获得积分10
9秒前
又声完成签到,获得积分10
9秒前
9秒前
吴吴温欣完成签到,获得积分20
9秒前
柏林寒冬给刘婷婷的求助进行了留言
9秒前
归途关注了科研通微信公众号
9秒前
10秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Oxford Learner's Pocket Word Skills 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5151967
求助须知:如何正确求助?哪些是违规求助? 4347586
关于积分的说明 13537453
捐赠科研通 4190264
什么是DOI,文献DOI怎么找? 2298014
邀请新用户注册赠送积分活动 1298303
关于科研通互助平台的介绍 1243075