癌症研究
细胞凋亡
癌症
基因
医学
生物
内科学
遗传学
作者
Lingbo Bao,Xudong Wang,Xiuyong Liao,Li Dong,ChunXue Li,Nan Dai,Xiaoyan Dai,Jing Yang,Nana Hu,Xueling Tong,Zhenjie He,Yuancheng Zhao,Zheng Liu,Yue Hu,Jinlu Shan,Dong Wang,Mengxia Li,Qian Chen
标识
DOI:10.1186/s13046-025-03485-6
摘要
Despite frequent Epidermal Growth Factor Receptor (EGFR) amplification and overexpression in gastric cancer, limited therapeutic responses were observed in existing EGFR-targeted agents. Pyrotinib, an irreversible dual EGFR/HER2 tyrosine kinase inhibitor, has shown clinical efficacy in HER2-driven malignancies, but its potential role in EGFR-high copy number gastric cancer remains to be investigated. Using EGFR-high copy number gastric cancer cell lines, primary cells and subcutaneous tumor models in nude mice, we systematically evaluated pyrotinib's anti-tumor activity through viability assays, apoptosis analysis, and transcriptomic profiling. Mechanistic studies included co-immunoprecipitation, proximity ligation assays, ubiquitination assays, and RNA sequencing. Pyrotinib selectively suppressed proliferation, induced apoptosis, and chemosensitized in EGFR-high copy number gastric cancer models. Mechanistically, pyrotinib promoted EGFR-GRP78 (Glucose-regulated protein 78) complex formation in the endoplasmic reticulum, activating the protein kinase R-like endoplasmic reticulum kinase/ activating transcription factor 4/ C-EBP homologous protein (PERK/ATF4/CHOP) axis to drive ER stress-mediated apoptosis. Concurrently, pyrotinib inhibited GRP78 phosphorylation at Thr62, triggering K48-linked ubiquitination (ubiquitin chains formed via lysine 48 linkages) and proteasomal degradation, which impaired DNA double-strand break (DSB) repair and sensitized cells to oxaliplatin-induced γ-H2A.X accumulation. This translational study suggests that pyrotinib combined with oxaliplatin may serve as a promising strategy for patients with EGFR-high copy number gastric cancer and highlighted the discovery of this previously unknown EGFR/ GRP78 signaling axis, which provides the molecular basis and the rationale to target EGFR.
科研通智能强力驱动
Strongly Powered by AbleSci AI