Chest X-ray Foundation Model with Global and Local Representations Integration

基础(证据) 计算机科学 人工智能 政治学 法学
作者
Zefan Yang,Xuanang Xu,Jiajin Zhang,Ge Wang,Mannudeep K. Kalra,Pingkun Yan
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2025.3581907
摘要

Chest X-ray (CXR) is the most frequently ordered imaging test, supporting diverse clinical tasks from thoracic disease detection to postoperative monitoring. However, task-specific classification models are limited in scope, require costly labeled data, and lack generalizability to out-of-distribution datasets. To address these challenges, we introduce CheXFound, a self-supervised vision foundation model that learns robust CXR representations and generalizes effectively across a wide range of downstream tasks. We pretrained CheXFound on a curated CXR-987K dataset, comprising over approximately 987K unique CXRs from 12 publicly available sources. We propose a Global and Local Representations Integration (GLoRI) head for downstream adaptations, by incorporating fine- and coarse-grained disease-specific local features with global image features for enhanced performance in multilabel classification. Our experimental results showed that CheXFound outperformed state-of-the-art models in classifying 40 disease findings across different prevalence levels on the CXR-LT 24 dataset and exhibited superior label efficiency on downstream tasks with limited training data. Additionally, CheXFound achieved significant improvements on downstream tasks with out-of-distribution datasets, including opportunistic cardiovascular disease risk estimation, mortality prediction, malpositioned tube detection, and anatomical structure segmentation. The above results demonstrate CheXFound's strong generalization capabilities, which will enable diverse downstream adaptations with improved label efficiency in future applications. The project source code is publicly available at https://github.com/RPIDIAL/CheXFound.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
言言言言完成签到,获得积分20
刚刚
刘123发布了新的文献求助10
刚刚
量子发布了新的文献求助10
1秒前
张梦园发布了新的文献求助10
2秒前
香蕉觅云应助鲤鱼听荷采纳,获得10
2秒前
cc完成签到,获得积分10
2秒前
英吉利25发布了新的文献求助10
3秒前
3秒前
无风发布了新的文献求助10
4秒前
细心溪流完成签到 ,获得积分10
4秒前
4秒前
Twonej应助ahui采纳,获得30
6秒前
Fan发布了新的文献求助10
7秒前
7秒前
苹果皮完成签到,获得积分10
7秒前
DrN完成签到,获得积分10
10秒前
12秒前
大模型应助无风采纳,获得10
12秒前
orixero应助manny采纳,获得30
16秒前
孙昌耀完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
田様应助开霁采纳,获得10
16秒前
16秒前
17秒前
17秒前
张梦园完成签到,获得积分20
18秒前
鲤鱼听荷发布了新的文献求助10
18秒前
木槿完成签到,获得积分10
18秒前
18秒前
19秒前
lzy完成签到 ,获得积分10
19秒前
Bowen发布了新的文献求助10
21秒前
21秒前
swsx1317发布了新的文献求助10
22秒前
科研通AI2S应助飞快的映菱采纳,获得10
22秒前
莹儿发布了新的文献求助30
22秒前
临河盗龙发布了新的文献求助30
22秒前
彭于晏应助温暖的颜演采纳,获得10
23秒前
111发布了新的文献求助10
24秒前
Kamal发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711738
求助须知:如何正确求助?哪些是违规求助? 5205626
关于积分的说明 15265191
捐赠科研通 4863974
什么是DOI,文献DOI怎么找? 2611057
邀请新用户注册赠送积分活动 1561379
关于科研通互助平台的介绍 1518704