亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

UA-VLFM: An Uncertainty-aware Vision-Language Foundation Model for Auxiliary Diagnosis of Vitreoretinal Iymphoma

作者
Wenwen Wang,Aidi Lin,Tian Lin,Zhen Liang,Kai Xu,Tao Li,Dan Liang,Shanshan Yu,Jing Luo,Ling Gao,Dawei Sun,Xinjian Chen,Haoyu Chen,Yuanyuan Peng
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:PP: 1-12
标识
DOI:10.1109/jbhi.2025.3611985
摘要

Vitreoretinal lymphoma (VRL) is a rare malignant ocular tumor, and its early diagnosis is crucial for patient prognosis. However, due to its insidious and diverse clinical manifestations, it is often misdiagnosed as other ophthalmic diseases, leading to blindness or even fatal outcomes. In this study, an uncertainty-aware visionlanguage foundational model (UA-VLFM) based on contrastive learning and uncertainty estimation is developed to achieve automatic classification of VRL and other 5 retinal diseases. First, we integrate MAE-based pretraining knowledge on large-scale optical coherence tomography (OCT) images and efficient Low-rank adaption (LoRA) optimization strategy to enhance the representation ability and optimization efficiency of the model. Moreover, an uncertainty-aware contrastive learning method based on Dirichlet distribution within the contrastive vision-language pretraining framework is proposed to further align vision and language feature in the high-dimensional embedding space and obtain prediction results with corresponding uncertainty scores, thereby enhancing the reliability of VRL diagnosis. In the test dataset with 5,563 OCT images, UA-VLFM achieves a higher average F1 score of 0.9684 than other state-of-the-art algorithms (0.8186-0.9427) and improves to 0.9839 with the threshold strategy. Notably, the proposed UA-VLFM achieves an F1 score of 0.9217 and 0.9544 before and after thresholding on VRL, the most challenging category, significantly outperforming other methods (0.5089-0.9366 and 0.6639-0.9133). Our UA-VLFM provides a trustworthy method for aiding in the diagnosis of VRL on retinal OCT images. The code has been released on Github: https://github.com/wang-wen-wen/UA-VLFM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朝雪完成签到,获得积分10
11秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
22秒前
30秒前
39秒前
arniu2008完成签到,获得积分20
46秒前
科研通AI6.1应助曾经问雁采纳,获得30
1分钟前
1分钟前
BowieHuang应助arniu2008采纳,获得10
1分钟前
sophy完成签到,获得积分20
1分钟前
在喝咖啡ing完成签到,获得积分10
1分钟前
Yuanyuan发布了新的文献求助10
1分钟前
简单发布了新的文献求助20
1分钟前
lovelife完成签到,获得积分10
1分钟前
qsxy发布了新的文献求助100
2分钟前
老老熊完成签到,获得积分10
2分钟前
2分钟前
qsxy完成签到,获得积分10
2分钟前
CodeCraft应助科研通管家采纳,获得10
2分钟前
2分钟前
小刘小刘发布了新的文献求助80
2分钟前
CodeCraft应助痴情的诗槐采纳,获得10
2分钟前
简单完成签到,获得积分20
2分钟前
小马甲应助小刘小刘采纳,获得10
3分钟前
3分钟前
Yuanyuan发布了新的文献求助10
3分钟前
3分钟前
Re完成签到 ,获得积分10
3分钟前
Yuanyuan发布了新的文献求助10
3分钟前
3分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
jokerhoney完成签到,获得积分0
4分钟前
4分钟前
今后应助科研通管家采纳,获得10
4分钟前
4分钟前
Li发布了新的文献求助10
4分钟前
佳宝(不可以喝但能吃完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788771
求助须知:如何正确求助?哪些是违规求助? 5711930
关于积分的说明 15473908
捐赠科研通 4916776
什么是DOI,文献DOI怎么找? 2646575
邀请新用户注册赠送积分活动 1594240
关于科研通互助平台的介绍 1548666