Real-World Remote Sensing Image Dehazing: Benchmark and Baseline

基线(sea) 计算机科学 水准点(测量) 遥感 人工智能 计算机视觉 地质学 大地测量学 海洋学
作者
Z. Zhu,Wei Lu,Si-Bao Chen,Chris Ding,Jin Tang,Bin Luo
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:63: 1-14 被引量:4
标识
DOI:10.1109/tgrs.2025.3584234
摘要

Remote Sensing Image Dehazing (RSID) poses significant challenges in real-world scenarios due to the complex atmospheric conditions and severe color distortions that degrade image quality. The scarcity of real-world remote sensing hazy image pairs has compelled existing methods to rely primarily on synthetic datasets. However, these methods struggle with real-world applications due to the inherent domain gap between synthetic and real data. To address this, we introduce Real-World Remote Sensing Hazy Image Dataset (RRSHID), the first large-scale dataset featuring real-world hazy and dehazed image pairs across diverse atmospheric conditions. Based on this, we propose MCAF-Net, a novel framework tailored for real-world RSID. Its effectiveness arises from three innovative components: Multi-branch Feature Integration Block Aggregator (MFIBA), which enables robust feature extraction through cascaded integration blocks and parallel multi-branch processing; Color-Calibrated Self-Supervised Attention Module (CSAM), which mitigates complex color distortions via self-supervised learning and attention-guided refinement; and Multi-Scale Feature Adaptive Fusion Module (MFAFM), which integrates features effectively while preserving local details and global context. Extensive experiments validate that MCAF-Net demonstrates state-of-the-art performance in real-world RSID, while maintaining competitive performance on synthetic datasets. The introduction of RRSHID and MCAF-Net sets new benchmarks for real-world RSID research, advancing practical solutions for this complex task. The code and dataset are publicly available at https://github.com/lwCVer/RRSHID.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李爱国应助szyyyyy采纳,获得10
2秒前
lgl发布了新的文献求助10
3秒前
luoluo完成签到,获得积分10
3秒前
shuxue完成签到,获得积分10
3秒前
yfjia发布了新的文献求助10
4秒前
旷野完成签到 ,获得积分10
4秒前
陈幡发布了新的文献求助10
6秒前
8秒前
zxer发布了新的文献求助10
8秒前
10秒前
852应助缪缪采纳,获得10
10秒前
劳伦斯完成签到 ,获得积分10
12秒前
yue完成签到,获得积分10
12秒前
LittleXH完成签到 ,获得积分10
12秒前
hellosci666完成签到,获得积分10
14秒前
15秒前
lgl完成签到,获得积分10
17秒前
LittleXH关注了科研通微信公众号
17秒前
19秒前
linhuafeng完成签到,获得积分10
19秒前
典雅的人生应助美满冷安采纳,获得10
20秒前
研友_VZG7GZ应助zxer采纳,获得10
22秒前
海中有月完成签到 ,获得积分10
23秒前
丘比特应助宁霸采纳,获得10
25秒前
26秒前
28秒前
张鱼小丸子完成签到,获得积分10
29秒前
赘婿应助dududu采纳,获得10
29秒前
31秒前
31秒前
科研通AI6.1应助陈幡采纳,获得10
33秒前
Nell发布了新的文献求助10
34秒前
彭于晏应助美羊羊采纳,获得10
34秒前
胡晒发布了新的文献求助10
35秒前
35秒前
35秒前
35秒前
StoneT发布了新的文献求助10
37秒前
宁霸发布了新的文献求助10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Using a Non-Equivalent Control Group Design in Educational Research 200
Public Health, Personal Health and Pills: Drug Entanglements and Pharmaceuticalised Governance 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5868507
求助须知:如何正确求助?哪些是违规求助? 6442192
关于积分的说明 15658509
捐赠科研通 4983965
什么是DOI,文献DOI怎么找? 2687703
邀请新用户注册赠送积分活动 1630329
关于科研通互助平台的介绍 1588432