Real-World Remote Sensing Image Dehazing: Benchmark and Baseline

基线(sea) 计算机科学 水准点(测量) 遥感 人工智能 计算机视觉 地质学 大地测量学 海洋学
作者
Z. Zhu,Wei Lu,Si-Bao Chen,Chris Ding,Jin Tang,Bin Luo
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:63: 1-14 被引量:4
标识
DOI:10.1109/tgrs.2025.3584234
摘要

Remote Sensing Image Dehazing (RSID) poses significant challenges in real-world scenarios due to the complex atmospheric conditions and severe color distortions that degrade image quality. The scarcity of real-world remote sensing hazy image pairs has compelled existing methods to rely primarily on synthetic datasets. However, these methods struggle with real-world applications due to the inherent domain gap between synthetic and real data. To address this, we introduce Real-World Remote Sensing Hazy Image Dataset (RRSHID), the first large-scale dataset featuring real-world hazy and dehazed image pairs across diverse atmospheric conditions. Based on this, we propose MCAF-Net, a novel framework tailored for real-world RSID. Its effectiveness arises from three innovative components: Multi-branch Feature Integration Block Aggregator (MFIBA), which enables robust feature extraction through cascaded integration blocks and parallel multi-branch processing; Color-Calibrated Self-Supervised Attention Module (CSAM), which mitigates complex color distortions via self-supervised learning and attention-guided refinement; and Multi-Scale Feature Adaptive Fusion Module (MFAFM), which integrates features effectively while preserving local details and global context. Extensive experiments validate that MCAF-Net demonstrates state-of-the-art performance in real-world RSID, while maintaining competitive performance on synthetic datasets. The introduction of RRSHID and MCAF-Net sets new benchmarks for real-world RSID research, advancing practical solutions for this complex task. The code and dataset are publicly available at https://github.com/lwCVer/RRSHID.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助努力学习采纳,获得10
刚刚
zhang-leo发布了新的文献求助10
刚刚
易怀亮完成签到,获得积分10
1秒前
HOAN应助专注依云采纳,获得30
1秒前
1秒前
1秒前
1秒前
Son4904完成签到,获得积分10
2秒前
2秒前
cc完成签到,获得积分20
2秒前
2秒前
xixi完成签到,获得积分10
2秒前
aaaaa发布了新的文献求助10
2秒前
踏实松鼠完成签到 ,获得积分10
2秒前
edge发布了新的文献求助10
3秒前
火星上若蕊完成签到,获得积分10
3秒前
3秒前
3秒前
糖_发布了新的文献求助10
4秒前
bear完成签到 ,获得积分10
4秒前
4秒前
shine完成签到,获得积分20
4秒前
5秒前
6秒前
葛天丽发布了新的文献求助10
6秒前
大拿发布了新的文献求助30
7秒前
里特思达完成签到 ,获得积分10
7秒前
Pumpkin发布了新的文献求助10
7秒前
7秒前
HgPP发布了新的文献求助30
7秒前
阿修罗发布了新的文献求助10
8秒前
科研通AI6应助michael采纳,获得10
8秒前
咩咩完成签到,获得积分10
8秒前
9秒前
慵懒的树完成签到,获得积分20
9秒前
科研通AI6应助优秀的行云采纳,获得10
9秒前
飞天小女警应助yuliuism采纳,获得50
9秒前
chen完成签到,获得积分10
10秒前
11秒前
Son4904发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667567
求助须知:如何正确求助?哪些是违规求助? 4886514
关于积分的说明 15120741
捐赠科研通 4826376
什么是DOI,文献DOI怎么找? 2583992
邀请新用户注册赠送积分活动 1538029
关于科研通互助平台的介绍 1496163