Real-World Remote Sensing Image Dehazing: Benchmark and Baseline

基线(sea) 计算机科学 水准点(测量) 遥感 人工智能 计算机视觉 地质学 大地测量学 海洋学
作者
Z. Zhu,Wei Lu,Si-Bao Chen,Chris Ding,Jin Tang,Bin Luo
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:63: 1-14 被引量:4
标识
DOI:10.1109/tgrs.2025.3584234
摘要

Remote Sensing Image Dehazing (RSID) poses significant challenges in real-world scenarios due to the complex atmospheric conditions and severe color distortions that degrade image quality. The scarcity of real-world remote sensing hazy image pairs has compelled existing methods to rely primarily on synthetic datasets. However, these methods struggle with real-world applications due to the inherent domain gap between synthetic and real data. To address this, we introduce Real-World Remote Sensing Hazy Image Dataset (RRSHID), the first large-scale dataset featuring real-world hazy and dehazed image pairs across diverse atmospheric conditions. Based on this, we propose MCAF-Net, a novel framework tailored for real-world RSID. Its effectiveness arises from three innovative components: Multi-branch Feature Integration Block Aggregator (MFIBA), which enables robust feature extraction through cascaded integration blocks and parallel multi-branch processing; Color-Calibrated Self-Supervised Attention Module (CSAM), which mitigates complex color distortions via self-supervised learning and attention-guided refinement; and Multi-Scale Feature Adaptive Fusion Module (MFAFM), which integrates features effectively while preserving local details and global context. Extensive experiments validate that MCAF-Net demonstrates state-of-the-art performance in real-world RSID, while maintaining competitive performance on synthetic datasets. The introduction of RRSHID and MCAF-Net sets new benchmarks for real-world RSID research, advancing practical solutions for this complex task. The code and dataset are publicly available at https://github.com/lwCVer/RRSHID.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呼啦啦发布了新的文献求助10
2秒前
快乐的薯片完成签到 ,获得积分10
3秒前
斯文败类应助风趣青槐采纳,获得10
5秒前
831143完成签到 ,获得积分0
6秒前
淡然寄瑶完成签到 ,获得积分10
7秒前
殷勤的紫槐应助吴雨胡采纳,获得200
8秒前
鲸与海完成签到,获得积分10
12秒前
14秒前
15秒前
完美世界应助王二毛采纳,获得10
15秒前
每天100次完成签到,获得积分10
15秒前
Jack完成签到 ,获得积分10
16秒前
滴滴滴滴滴滴滴关注了科研通微信公众号
17秒前
18秒前
顾矜应助每天100次采纳,获得20
19秒前
20秒前
沈格应助arizaki7采纳,获得10
23秒前
子韵完成签到,获得积分20
24秒前
24秒前
科研丁真发布了新的文献求助10
24秒前
24秒前
llk发布了新的文献求助10
25秒前
英吉利25发布了新的文献求助20
25秒前
风趣青槐发布了新的文献求助10
28秒前
天行马发布了新的文献求助10
28秒前
在德黑兰击剑的椰子完成签到,获得积分10
28秒前
烟花应助追寻的亦凝采纳,获得10
29秒前
30秒前
32秒前
32秒前
领导范儿应助小赵爱喝水采纳,获得10
34秒前
chenax发布了新的文献求助10
34秒前
情怀应助dracovu采纳,获得10
36秒前
闲时觅翠发布了新的文献求助10
37秒前
38秒前
39秒前
39秒前
子韵发布了新的文献求助10
43秒前
43秒前
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Key Thinkers in Industrial and Organizational Psychology 500
A positive solution of a nonlinear elliptic equation in $\Bbb R^N$ with $G$-symmetry 200
Eine Fährtenschicht im mittelfränkischen Blasensandstein 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5869512
求助须知:如何正确求助?哪些是违规求助? 6452759
关于积分的说明 15661217
捐赠科研通 4985301
什么是DOI,文献DOI怎么找? 2688385
邀请新用户注册赠送积分活动 1630817
关于科研通互助平台的介绍 1588894