Comparison of machine learning predictions of subjective poverty in rural China

感觉 贫穷 随机森林 社会经济地位 消费(社会学) 经济 机器学习 贫困线 捐赠 人工智能 家庭收入 心理学 计量经济学 决策树 集合(抽象数据类型) 差异(会计) 人口统计学的 衡量贫困 支持向量机 规范性 幸福 极端贫困
作者
Lucie Maruejols,Hanjie Wang,Qiran Zhao,Yunli Bai,Linxiu Zhang
出处
期刊:RePEc: Research Papers in Economics - RePEc
标识
DOI:10.1108/caer-03-2022-0051/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
摘要

Purpose - Despite rising incomes and reduction of extreme poverty, the feeling of being poor remains widespread. Support programs can improve well-being, but they first require identifying who are the households that judge their income is insufficient to meet their basic needs, and what factors are associated with subjective poverty. Design/methodology/approach - Households report the income level they judge is sufficient to make ends meet. Then, they are classified as being subjectively poor if their own monetary income is inferior to the level they indicated. Second, the study compares the performance of three machine learning algorithms, the random forest, support vector machines and least absolute shrinkage and selection operator (LASSO) regression, applied to a set of socioeconomic variables to predict subjective poverty status. Findings - The random forest generates 85.29% of correct predictions using a range of income and non-income predictors, closely followed by the other two techniques. For the middle-income group, the LASSO regression outperforms random forest. Subjective poverty is mostly associated with monetary income for low-income households. However, a combination of low income, low endowment (land, consumption assets) and unusual large expenditure (medical, gifts) constitutes the key predictors of feeling poor for the middle-income households. Practical implications - To reduce the feeling of poverty, policy intervention should continue to focus on increasing incomes. However, improvements in nonincome domains such as health expenditure, education and family demographics can also relieve the feeling of income inadequacy. Methodologically, better performance of either algorithm depends on the data at hand. Originality/value - For the first time, the authors show that prediction techniques are reliable to identify subjective poverty prevalence, with example from rural China. The analysis offers specific attention to the modest-income households, who may feel poor but not be identified as such by objective poverty lines, and is relevant when policy-makers seek to address the “next step” after ending extreme poverty. Prediction performance and mechanisms for three machine learning algorithms are compared.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助怕黑念薇采纳,获得10
刚刚
勾勾歪发布了新的文献求助10
刚刚
小盖完成签到,获得积分10
刚刚
可爱的函函应助Wuxxi采纳,获得10
刚刚
1秒前
浅学者发布了新的文献求助10
1秒前
u7iui发布了新的文献求助10
2秒前
4秒前
张宇豪发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
OliAn完成签到,获得积分10
6秒前
6秒前
Joie完成签到,获得积分10
8秒前
jlb发布了新的文献求助10
8秒前
冷傲凝琴发布了新的文献求助10
9秒前
居居子完成签到,获得积分10
9秒前
淡定自中发布了新的文献求助10
10秒前
10秒前
懒大王发布了新的文献求助10
11秒前
四菇娘发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
CipherSage应助浅学者采纳,获得10
12秒前
Alice0210发布了新的文献求助10
12秒前
眼睛大的比巴卜完成签到,获得积分20
14秒前
14秒前
14秒前
77关注了科研通微信公众号
16秒前
火星上的冰岚完成签到,获得积分10
16秒前
乐乐应助xialuoke采纳,获得10
17秒前
18秒前
李大橘发布了新的文献求助10
19秒前
迟山完成签到 ,获得积分10
19秒前
20秒前
张宇豪完成签到,获得积分10
20秒前
20秒前
dm11发布了新的文献求助10
21秒前
21秒前
22秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5583326
求助须知:如何正确求助?哪些是违规求助? 4667155
关于积分的说明 14765758
捐赠科研通 4609337
什么是DOI,文献DOI怎么找? 2529123
邀请新用户注册赠送积分活动 1498393
关于科研通互助平台的介绍 1467043