二元分析
威布尔分布
数学
单变量
统计
双变量
反向
计量经济学
最大似然
灵活性(工程)
统计模型
估计理论
分布(数学)
度量(数据仓库)
估计
逆高斯分布
联合概率分布
相关性(法律)
概率分布
作者
Ammar M. Sarhan,A. S. Tolba,Dina A. Ramadan,Thamer Manshi
出处
期刊:Mathematics
[MDPI AG]
日期:2025-12-28
卷期号:14 (1): 120-120
摘要
This paper introduces a novel bivariate distribution, referred to as the Bivariate Burr XII Inverse Weibull (BBXII-IW) distribution, constructed via the Marshall–Olkin approach from the univariate Burr XII Inverse Weibull (BXII-IW) distribution. The proposed BBXII-IW model provides a flexible framework for modeling dependent bivariate data, including competing risk scenarios. The key statistical properties of the distribution are derived, and parameter estimation is conducted using the maximum likelihood method. The model’s performance is evaluated using two types of real-world datasets: (1) bivariate data and (2) dependent competing risk data related to diabetic retinopathy. The results demonstrate that the BBXII-IW distribution offers an improved fit compared to existing models, highlighting its flexibility and practical relevance in modeling complex dependent structures.
科研通智能强力驱动
Strongly Powered by AbleSci AI