Non-Intrusive Speech Quality Assessment Based on Deep Neural Networks for Speech Communication

计算机科学 判别式 自编码 语音识别 人工神经网络 深度学习 积极倾听 人工智能 学习迁移 分类器(UML) 机器学习 质量(理念) 数据质量 社会学 哲学 认识论 经济 公制(单位) 沟通 运营管理
作者
Miao Liu,Jing Wang,Fei Wang,Fei Xiang,Jingdong Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:3
标识
DOI:10.1109/tnnls.2023.3321076
摘要

Traditionally, speech quality evaluation relies on subjective assessments or intrusive methods that require reference signals or additional equipment. However, over recent years, non-intrusive speech quality assessment has emerged as a promising alternative, capturing much attention from researchers and industry professionals. This article presents a deep learning-based method that exploits large-scale intrusive simulated data to improve the accuracy and generalization of non-intrusive methods. The major contributions of this article are as follows. First, it presents a data simulation method, which generates degraded speech signals and labels their speech quality with the perceptual objective listening quality assessment (POLQA). The generated data is proven to be useful for pretraining the deep learning models. Second, it proposes to apply an adversarial speaker classifier to reduce the impact of speaker-dependent information on speech quality evaluation. Third, an autoencoder-based deep learning scheme is proposed following the principle of representation learning and adversarial training (AT) methods, which is able to transfer the knowledge learned from a large amount of simulated speech data labeled by POLQA. With the help of discriminative representations extracted from the autoencoder, the prediction model can be trained well on a relatively small amount of speech data labeled through subjective listening tests. Fourth, an end-to-end speech quality evaluation neural network is developed, which takes magnitude and phase spectral features as its inputs. This phase-aware model is more accurate than the model using only the magnitude spectral features. A large number of experiments are carried out with three datasets: one simulated with labels obtained using POLQA and two recorded with labels obtained using subjective listening tests. The results show that the presented phase-aware method improves the performance of the baseline model and the proposed model with latent representations extracted from the adversarial autoencoder (AAE) outperforms the state-of-the-art objective quality assessment methods, reducing the root mean square error (RMSE) by 10.5% and 12.2% on the Beijing Institute of Technology (BIT) dataset and Tencent Corpus, respectively. The code and supplementary materials are available at https://github.com/liushenme/AAE-SQA.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fzzf发布了新的文献求助10
刚刚
Jack完成签到,获得积分10
刚刚
摸鱼之神发布了新的文献求助10
1秒前
田培初完成签到,获得积分10
1秒前
呆萌的羊完成签到,获得积分10
2秒前
健康的小馒头关注了科研通微信公众号
2秒前
2秒前
Luna爱科研完成签到 ,获得积分10
3秒前
Belief完成签到,获得积分10
4秒前
闹闹发布了新的文献求助10
4秒前
五五我完成签到,获得积分10
5秒前
完美天蓝完成签到 ,获得积分10
5秒前
帮我下一下完成签到,获得积分10
6秒前
江恋完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
ryt发布了新的文献求助10
8秒前
小熙完成签到 ,获得积分10
8秒前
ning完成签到,获得积分10
8秒前
佳语妍说完成签到,获得积分10
8秒前
9秒前
9秒前
FIN应助摸鱼之神采纳,获得30
9秒前
Zhe完成签到,获得积分10
10秒前
Zero完成签到,获得积分10
10秒前
LingYun完成签到,获得积分10
10秒前
小二郎应助鲤鱼大神采纳,获得10
10秒前
烨伟完成签到,获得积分10
10秒前
lihua完成签到,获得积分10
11秒前
朴素青寒完成签到,获得积分10
11秒前
五五我发布了新的文献求助10
11秒前
鸣笛应助动听的幼荷采纳,获得10
11秒前
hjg完成签到,获得积分10
11秒前
11完成签到,获得积分10
12秒前
复杂的海完成签到,获得积分10
12秒前
悦悦发布了新的文献求助100
12秒前
踏实秋莲完成签到,获得积分10
12秒前
kiska完成签到,获得积分10
12秒前
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Italian Feminism of Sexual Difference: A Different Ecofeminist Thought 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3934717
求助须知:如何正确求助?哪些是违规求助? 3480165
关于积分的说明 11007375
捐赠科研通 3210047
什么是DOI,文献DOI怎么找? 1774006
邀请新用户注册赠送积分活动 860670
科研通“疑难数据库(出版商)”最低求助积分说明 797819