Non-Intrusive Speech Quality Assessment Based on Deep Neural Networks for Speech Communication

计算机科学 判别式 自编码 语音识别 人工神经网络 深度学习 积极倾听 人工智能 学习迁移 分类器(UML) 机器学习 质量(理念) 数据质量 公制(单位) 哲学 运营管理 沟通 认识论 社会学 经济
作者
Miao Liu,Jing Wang,Fei Wang,Fei Xiang,Jingdong Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:3
标识
DOI:10.1109/tnnls.2023.3321076
摘要

Traditionally, speech quality evaluation relies on subjective assessments or intrusive methods that require reference signals or additional equipment. However, over recent years, non-intrusive speech quality assessment has emerged as a promising alternative, capturing much attention from researchers and industry professionals. This article presents a deep learning-based method that exploits large-scale intrusive simulated data to improve the accuracy and generalization of non-intrusive methods. The major contributions of this article are as follows. First, it presents a data simulation method, which generates degraded speech signals and labels their speech quality with the perceptual objective listening quality assessment (POLQA). The generated data is proven to be useful for pretraining the deep learning models. Second, it proposes to apply an adversarial speaker classifier to reduce the impact of speaker-dependent information on speech quality evaluation. Third, an autoencoder-based deep learning scheme is proposed following the principle of representation learning and adversarial training (AT) methods, which is able to transfer the knowledge learned from a large amount of simulated speech data labeled by POLQA. With the help of discriminative representations extracted from the autoencoder, the prediction model can be trained well on a relatively small amount of speech data labeled through subjective listening tests. Fourth, an end-to-end speech quality evaluation neural network is developed, which takes magnitude and phase spectral features as its inputs. This phase-aware model is more accurate than the model using only the magnitude spectral features. A large number of experiments are carried out with three datasets: one simulated with labels obtained using POLQA and two recorded with labels obtained using subjective listening tests. The results show that the presented phase-aware method improves the performance of the baseline model and the proposed model with latent representations extracted from the adversarial autoencoder (AAE) outperforms the state-of-the-art objective quality assessment methods, reducing the root mean square error (RMSE) by 10.5% and 12.2% on the Beijing Institute of Technology (BIT) dataset and Tencent Corpus, respectively. The code and supplementary materials are available at https://github.com/liushenme/AAE-SQA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灵灵完成签到 ,获得积分20
刚刚
Wiz111发布了新的文献求助10
2秒前
在水一方应助谦让的烧鹅采纳,获得10
2秒前
2秒前
3秒前
3秒前
量子星尘发布了新的文献求助20
3秒前
ZHAO发布了新的文献求助10
4秒前
共享精神应助斯梵德采纳,获得10
5秒前
思源应助张张的尾巴采纳,获得30
5秒前
Kim_发布了新的文献求助10
6秒前
小二郎应助呆萌的映易采纳,获得10
7秒前
lucky完成签到,获得积分10
7秒前
失眠的数据线完成签到,获得积分10
8秒前
浮游应助酱啊油采纳,获得10
8秒前
sxy完成签到,获得积分10
9秒前
亚尔完成签到,获得积分10
10秒前
共享精神应助赵三仟采纳,获得10
10秒前
10秒前
NexusExplorer应助123采纳,获得10
11秒前
ZHAO完成签到,获得积分10
11秒前
科研通AI5应助无限幻枫采纳,获得10
11秒前
罗小悦完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
大刘完成签到,获得积分10
13秒前
野猪佩奇完成签到,获得积分10
14秒前
刘瀚臻发布了新的文献求助10
14秒前
14秒前
哎哎发布了新的文献求助10
14秒前
整齐的鑫鹏完成签到,获得积分10
15秒前
15秒前
zlt完成签到,获得积分10
15秒前
18秒前
斯梵德发布了新的文献求助10
18秒前
19秒前
19秒前
哎哎完成签到,获得积分10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5002999
求助须知:如何正确求助?哪些是违规求助? 4247820
关于积分的说明 13234366
捐赠科研通 4046818
什么是DOI,文献DOI怎么找? 2213919
邀请新用户注册赠送积分活动 1223992
关于科研通互助平台的介绍 1144289