已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Fast and precise DEM parameter calibration for Cucurbita ficifolia seeds

校准 解算器 决定系数 休止角 近似误差 数学 响应面法 算法 模拟 生物系统 计算机科学 统计 材料科学 数学优化 复合材料 生物
作者
Xinting Ding,Binbin Wang,Zhi He,Yinggang Shi,Kai Li,Yongjie Cui,Qichang Yang
出处
期刊:Biosystems Engineering [Elsevier BV]
卷期号:236: 258-276 被引量:17
标识
DOI:10.1016/j.biosystemseng.2023.11.004
摘要

The lack of discrete element method (DEM) models and calibration parameters for Cucurbita ficifolia seeds, as well as low accuracy and efficiency of common parameters calibration methods, hinder the application of DEM for computer simulation in air-suction directional seeding equipment. In this study, the DEM parameters of the seeds were calibrated. The angle of repose (AOR), intrinsic parameters, and partial contact parameters of the seeds were experimentally measured. The seed 3D models were reconstructed based on the three-view profile information. The parameters and their value ranges were filtered through the Plackett–Burman design and steepest ascent test. The response surface method (RSM) and machine learning were utilised for optimisation inversion of the parameters. The experiments showed that the geometric relative error of the seed model was 0.69–6.54%, which meets the modelling requirements for DEM. The seed–seed static friction coefficient, the seed–seed and the seed–PVC rolling friction coefficient were 0.341, 0.026, and 0.059, respectively, which were obtained by inverting the GA-BP regression model via the Genetic Algorithm. The simulated AOR was 26.64°, with a relative error compared to the actual AOR of 1.64%, which was better than the simulated AOR obtained by RSM optimisation. The greater the smoothing value setting in EDEM software, the less the particle filling, resulting in improved simulation efficiency but reduced model accuracy. The CPU + GPU(CUDA) solver showed high DEM solution efficiency. The results reveal that the method can be used to quickly and accurately construct a 3D model of the seed, and the parameter optimisation accuracy of GA-BP-GA is better than that of RSM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助deeferf采纳,获得10
刚刚
2秒前
邓超发布了新的文献求助10
2秒前
激昂的南晴完成签到 ,获得积分10
3秒前
4秒前
fkwwdamocles发布了新的文献求助10
6秒前
小李飞刀发布了新的文献求助10
7秒前
liuaq627完成签到 ,获得积分10
7秒前
小饶完成签到,获得积分10
8秒前
老虎皮完成签到,获得积分10
9秒前
菟小鹿发布了新的文献求助10
9秒前
酷炫的幻丝完成签到 ,获得积分10
9秒前
单纯灵松完成签到 ,获得积分20
11秒前
13秒前
小新完成签到 ,获得积分10
14秒前
14秒前
科研通AI5应助痴情的博超采纳,获得10
14秒前
16秒前
乐乐应助科研通管家采纳,获得10
16秒前
小李老博应助科研通管家采纳,获得10
16秒前
Lucas应助科研通管家采纳,获得10
16秒前
ding应助科研通管家采纳,获得10
16秒前
Ava应助徐个愿吧采纳,获得10
16秒前
Owen应助科研通管家采纳,获得30
16秒前
16秒前
半生瓜应助科研通管家采纳,获得20
16秒前
随遇而安应助科研通管家采纳,获得20
16秒前
16秒前
16秒前
16秒前
17秒前
17秒前
可爱的函函应助Yossi采纳,获得10
17秒前
谢青完成签到,获得积分10
18秒前
18秒前
屑屑鲨鱼发布了新的文献求助10
19秒前
19秒前
gr完成签到,获得积分10
20秒前
20秒前
lin发布了新的文献求助10
22秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
Anti-Politics Machine: Development, Depoliticization, and Bureaucratic Power in Lesotho James Ferguson 200
A monograph of the genera Conocybe and Pholiotina in Europe 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837158
求助须知:如何正确求助?哪些是违规求助? 3379387
关于积分的说明 10508924
捐赠科研通 3099088
什么是DOI,文献DOI怎么找? 1706862
邀请新用户注册赠送积分活动 821288
科研通“疑难数据库(出版商)”最低求助积分说明 772499