Prediction of 3D RNA Structures from Sequence Using Energy Landscapes of RNA Dimers: Application to RNA Tetraloops

核糖核酸 序列(生物学) 核酸结构 核酸二级结构 计算生物学 算法 计算机科学 生物系统 生物 生物信息学 遗传学 基因
作者
Ilyas Yildirim,Ivan Riveros
标识
DOI:10.26434/chemrxiv-2023-d2cg5
摘要

Access to the three-dimensional structure of RNA enables an ability to gain a more profound understanding of its biological mechanisms, as well as the ability to design RNA-targeting drugs, which can take advantage of the unique chemical environment imposed by a folded RNA structure. Due to the dynamic and structurally complex properties of RNA, both experimental and traditional computational methods have difficulty in determining RNA’s 3D structure. Herein, we introduce TAPERSS (Theoretical Analyses, Prediction, and Evaluation of RNA Structures from Sequence), a physics-based fragment assembly method for predicting 3D RNA structures from sequence. Using a fragment library created using discrete path sampling calculations of RNA dinucleoside monophosphates, TAPERSS can sample the physics-based energy landscapes of any RNA sequence with relatively low computational complexity. We have benchmarked TAPERSS on 21 RNA tetraloops, using a combinatorial algorithm as a proof-of-concept. We show that TAPERSS was successfully able to predict the apo-state structures of all 21 RNA hairpins, with 16 of those structures also having low predicted energies as well. We demonstrate that TAPERSS performs most accurately on GNRA-like tetraloops with mostly stacked loop-nucleotides, while having limited success with more dynamic UNCG and CUYG tetraloops, most likely due to the influence of the RNA force field used to create the fragment library. Moreover, we show that TAPERSS can successfully predict the majority of the experimental non-apo states, highlighting its potential in anticipating biologically significant yet unobserved states. This holds great promise for future applications in drug design and related studies. With discussed improvements and implementation of more efficient sampling algorithms, we believe TAPERSS may serve as a useful tool for a physics-based conformational sampling of large RNA structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酒酿是也完成签到 ,获得积分10
1秒前
赖建琛完成签到 ,获得积分10
1秒前
锌小子完成签到,获得积分10
2秒前
ha完成签到 ,获得积分10
2秒前
王者归来完成签到,获得积分10
3秒前
子卿发布了新的文献求助10
4秒前
谢书南完成签到,获得积分10
5秒前
椿人完成签到 ,获得积分10
5秒前
zh_li完成签到,获得积分10
5秒前
wanci应助钟山采纳,获得10
6秒前
王丹靖完成签到,获得积分10
7秒前
科研小lese完成签到,获得积分10
7秒前
冷艳的凡阳完成签到,获得积分10
7秒前
奇点完成签到 ,获得积分10
7秒前
研友_ZeqAxZ完成签到,获得积分10
8秒前
机灵夏云完成签到,获得积分10
8秒前
沈尔云完成签到,获得积分10
8秒前
高大以南完成签到,获得积分10
8秒前
99完成签到,获得积分10
9秒前
wonwojo完成签到 ,获得积分10
9秒前
9秒前
慢歌完成签到 ,获得积分10
9秒前
10秒前
秋天完成签到,获得积分10
11秒前
小马甲应助weiyiZhang采纳,获得10
11秒前
占那个完成签到 ,获得积分10
11秒前
ffw1完成签到,获得积分10
11秒前
榴莲发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
高挑的萤发布了新的文献求助10
13秒前
缥缈月光完成签到,获得积分10
13秒前
eryday0完成签到,获得积分10
13秒前
赵培媛完成签到,获得积分10
14秒前
fang完成签到,获得积分10
14秒前
周一凡完成签到 ,获得积分10
15秒前
cst完成签到,获得积分10
15秒前
可爱的函函应助Felix采纳,获得10
16秒前
碳土不凡完成签到 ,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3946270
求助须知:如何正确求助?哪些是违规求助? 3491227
关于积分的说明 11059792
捐赠科研通 3222120
什么是DOI,文献DOI怎么找? 1780916
邀请新用户注册赠送积分活动 865894
科研通“疑难数据库(出版商)”最低求助积分说明 800083