Classification of Benign and Malignant Pulmonary Nodules Based on Mixed Features

人工智能 可解释性 深度学习 计算机科学 卷积神经网络 机器学习 肺癌 特征提取 特征(语言学) 特征工程 模式识别(心理学) 深层神经网络 医学 病理 语言学 哲学
作者
Shaojun Liu,Shujing Wang,Qixiang Wang,Junhua Luo
标识
DOI:10.23919/ccc58697.2023.10240557
摘要

Lung cancer is a pervasive malignancy that remains the leading cause of cancer-related mortality worldwide [1] . Accurate diagnosis of benign and malignant lung nodules is crucial for the prevention and treatment of lung cancer. However, traditional methods of manually designed features face challenges in extracting and analyzing deep-level features using mathematical models. Meanwhile, methods using convolutional neural networks can extract deep-level features, but lack interpretability and are not as effective as manually designed feature methods for shallow visual features. To address these challenges, we propose a lung nodule classification method that combines shallow visual and deep learning features. We construct shallow visual and deep learning networks to extract and classify shallow visual features and deep learning features, respectively. Finally, we use a multi-model fusion strategy to achieve benign and malignant classification of lung nodules. In particular, we employ a neural network architecture search to build a deep learning network with better interpretability and performance. We conducted extensive experiments on the LIDC-IDRI dataset and compared our method with the state-of-the-art research. Our results show that our method outperforms existing methods with an accuracy and F1 score of 91.21% and 91.04, respectively. demonstrating the effectiveness and superiority of our algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Seek完成签到,获得积分10
刚刚
刚刚
Epiphany发布了新的文献求助10
刚刚
杋困了完成签到 ,获得积分10
1秒前
动漫大师发布了新的文献求助10
1秒前
2秒前
ckz完成签到,获得积分10
3秒前
6秒前
小泉完成签到 ,获得积分10
7秒前
DuWilliam发布了新的文献求助10
7秒前
昏睡的蟠桃应助oguricap采纳,获得200
8秒前
1459完成签到,获得积分10
8秒前
科研通AI5应助Daixi_Chen采纳,获得30
9秒前
10秒前
77最可爱完成签到,获得积分10
10秒前
Jasper应助不想看文献采纳,获得10
11秒前
11秒前
wxyinhefeng完成签到 ,获得积分10
11秒前
fosca完成签到,获得积分10
12秒前
快乐的幻波完成签到,获得积分20
12秒前
艾文完成签到,获得积分10
14秒前
小蘑菇应助科研通管家采纳,获得10
15秒前
故酒应助科研通管家采纳,获得10
15秒前
华仔应助科研通管家采纳,获得10
15秒前
在水一方应助科研通管家采纳,获得10
15秒前
小马甲应助科研通管家采纳,获得10
15秒前
诸葛御风应助科研通管家采纳,获得20
15秒前
zjw应助科研通管家采纳,获得10
15秒前
今后应助科研通管家采纳,获得10
15秒前
852应助科研通管家采纳,获得10
15秒前
清脆寄容应助科研通管家采纳,获得10
15秒前
852应助科研通管家采纳,获得10
16秒前
HEIKU应助科研通管家采纳,获得10
16秒前
脑洞疼应助科研通管家采纳,获得10
16秒前
在水一方应助科研通管家采纳,获得10
16秒前
zjw应助科研通管家采纳,获得10
16秒前
李健应助科研通管家采纳,获得10
16秒前
16秒前
Orange应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801141
求助须知:如何正确求助?哪些是违规求助? 3346809
关于积分的说明 10330527
捐赠科研通 3063158
什么是DOI,文献DOI怎么找? 1681402
邀请新用户注册赠送积分活动 807549
科研通“疑难数据库(出版商)”最低求助积分说明 763728