扭矩
人工神经网络
蒙特卡罗方法
轨道(动力学)
加速
计算
计算机科学
算法
人工智能
物理
数学
统计
工程类
航空航天工程
并行计算
热力学
作者
Anubha Sehgal,Kunal Das,Seema Dhull,Sourajeet Roy,Brajesh Kumar Kaushik
标识
DOI:10.1109/nano58406.2023.10231285
摘要
In this paper, an artificial neural network (ANN) based surrogate modeling is performed to estimate the variability in multilevel spin-orbit torque magnetic random-access memory (SOT-MRAM). ANN is utilized to predict the impact of variations in device parameters such as oxide thickness, free layer thickness, tunnel magneto-resistance (TMR), and temperature on the resistance and write energy (Ewrite). The results demonstrate that the ANN approach is suited for fast computation when compared with Monte-Carlo framework offering a thousand orders of speedup in magnitude with 99.5%, 98.98%, 98.59%, and 97.99% accuracy respectively for different resistance values (R00, R01, R10, R11).
科研通智能强力驱动
Strongly Powered by AbleSci AI