A radiomics signature associated with underlying gene expression pattern for the prediction of prognosis and treatment response in hepatocellular carcinoma

医学 肝细胞癌 无线电技术 比例危险模型 接收机工作特性 基因签名 队列 Lasso(编程语言) 肿瘤科 基因表达 回顾性队列研究 基因 内科学 放射科 生物化学 万维网 化学 计算机科学
作者
Dandan Wang,Linhan Zhang,Zhongqi Sun,Huijie Jiang,Jinfeng Zhang
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:167: 111086-111086 被引量:24
标识
DOI:10.1016/j.ejrad.2023.111086
摘要

Identifying robust prognosis and treatment efficiency predictive biomarkers of hepatocellular carcinoma (HCC) is challenging. The purpose of this study is to develop a radiomics approach for predicting the overall survival (OS) based on pretreatment CT images and to explore the radiomic-associated key genes.Patients with pathologically or clinically proven HCC from three data sets were retrospectively included in this study. The institute internal data that received transarterial chemoembolization (TACE) treatment was used as the training set to construct the radiomics signature to predict OS by the least absolute shrinkage and selection operator COX (LASSO-COX) regression algorithms. The model was externally tested in 41 patients from The Cancer Genome Atlas (TCGA) with available CT images. Area under the receiver operating characteristics curve (AUC) and the log-rank test were used for survival analysis based on high versus low radiomics score. RNA sequencing data of TCGA and Gene Expression Omnibus (GEO) public database were used for gene expression analysis.A total of 752 patients were divided into the Radiomics cohort (n = 267), the TCGA cohort (n = 338) and GEO cohort (n = 147). The rad-score divided patients into high and low risk groups, with significant survival differences (P < 0.0001 and P = 0.0055) in the training and external test set. The AUC for 5 years' OS were 0.730 and 0.695, respectively. Seven OS-related genes (SPP1, GJA5, GJA4, INMT, PDZD4, ALDOA and MAFG) were identified, all of which were related with TACE efficiency, except for MAFG (P greater than 0.05).CT-radiomics signature could effectively predict the prognosis and treatment response of HCC, which were also associated with the tumor microenvironment heterogeneity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
一页墨城完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
种花兔发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
jrzsy完成签到,获得积分10
4秒前
4秒前
4秒前
NexusExplorer应助葵小葵采纳,获得10
5秒前
佳佳528完成签到,获得积分10
5秒前
万能图书馆应助潞垚采纳,获得10
5秒前
上官若男应助珍珍采纳,获得10
5秒前
6秒前
哈哈发布了新的文献求助10
6秒前
wxh发布了新的文献求助20
6秒前
6秒前
zjw发布了新的文献求助10
7秒前
7秒前
yii发布了新的文献求助10
8秒前
ff发布了新的文献求助10
9秒前
zxY发布了新的文献求助10
9秒前
10秒前
北北贝贝完成签到,获得积分10
10秒前
Young发布了新的文献求助10
11秒前
云游归尘发布了新的文献求助10
11秒前
HongY完成签到,获得积分10
12秒前
shidandan完成签到 ,获得积分10
12秒前
12秒前
深情安青应助爱撞墙的猫采纳,获得10
13秒前
种花兔完成签到,获得积分10
14秒前
摆烂完成签到,获得积分10
14秒前
pluto应助佳佳528采纳,获得10
14秒前
yii完成签到,获得积分10
15秒前
15秒前
慈祥的蛋挞完成签到 ,获得积分10
15秒前
JamesPei应助eraygt采纳,获得10
15秒前
15秒前
燕烟完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613711
求助须知:如何正确求助?哪些是违规求助? 4698841
关于积分的说明 14899179
捐赠科研通 4737144
什么是DOI,文献DOI怎么找? 2547125
邀请新用户注册赠送积分活动 1511132
关于科研通互助平台的介绍 1473605