A Systematic Literature Review on Multimodal Image Fusion Models With Challenges and Future Research Trends

图像融合 计算机科学 人工智能 模态(人机交互) 计算机视觉 转化(遗传学) 模式 图像(数学) 图像处理 融合 噪音(视频) 社会科学 生物化学 化学 语言学 哲学 社会学 基因
作者
Jampani Ravi,R. Narmadha
出处
期刊:International Journal of Image and Graphics [World Scientific]
被引量:1
标识
DOI:10.1142/s0219467825500391
摘要

Imaging technology has undergone extensive development since 1985, which has practical implications concerning civilians and the military. Recently, image fusion is an emerging tool in image processing that is adept at handling diverse image types. Those image types include remote sensing images and medical images for upgrading the information through the fusion of visible and infrared light based on the analysis of the materials used. Presently, image fusion has been mainly performed in the medical industry. With the constraints of diagnosing a disease via single-modality images, image fusion could be able to meet up the prerequisites. Hence, it is further suggested to develop a fusion model using different modalities of images. The major intention of the fusion approach is to achieve higher contrast, enhancing the quality of images and apparent knowledge. The validation of fused images is done by three factors that are: (i) fused images should sustain significant information from the source images, (ii) artifacts must not be present in the fused images and (iii) the flaws of noise and misregistration must be evaded. Multimodal image fusion is one of the developing domains through the implementation of robust algorithms and standard transformation techniques. Thus, this work aims to analyze the different contributions of various multimodal image fusion models using intelligent methods. It will provide an extensive literature survey on image fusion techniques and comparison of those methods with the existing ones. It will offer various state-of-the-arts of image fusion methods with their diverse levels as well as their pros and cons. This review will give an introduction to the current fusion methods, modes of multimodal fusion, the datasets used and performance metrics; and finally, it also discusses the challenges of multimodal image fusion methods and the future research trends.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
swan发布了新的文献求助10
2秒前
楼迎荷完成签到,获得积分10
2秒前
杨家辉完成签到,获得积分20
2秒前
斯文败类应助雪山飞虹采纳,获得10
5秒前
顾矜应助激情的士萧采纳,获得10
5秒前
FashionBoy应助糯米糍采纳,获得10
6秒前
慕青应助务实的南露采纳,获得10
7秒前
SYLH应助ComeOn采纳,获得10
8秒前
NexusExplorer应助Tzzl0226采纳,获得10
9秒前
称心曼安应助木头马尾采纳,获得10
10秒前
10秒前
10秒前
无痕完成签到,获得积分10
14秒前
14秒前
orixero应助Yh_alive采纳,获得10
15秒前
15秒前
17秒前
17秒前
shanp发布了新的文献求助10
18秒前
18秒前
格物致理完成签到,获得积分10
18秒前
称心曼安应助糯米糍采纳,获得10
20秒前
慕青应助火火火采纳,获得10
21秒前
BBzc发布了新的文献求助10
22秒前
酷酷隶完成签到,获得积分20
23秒前
小蘑菇应助YYMM采纳,获得10
24秒前
雪山飞虹发布了新的文献求助10
24秒前
junmahmu完成签到,获得积分10
24秒前
共享精神应助luyao采纳,获得10
25秒前
11111发布了新的文献求助10
26秒前
27秒前
28秒前
hu完成签到,获得积分10
28秒前
28秒前
30秒前
善良的宛凝完成签到,获得积分10
30秒前
31秒前
31秒前
SMG发布了新的文献求助30
32秒前
JAKEyy完成签到,获得积分10
33秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814939
求助须知:如何正确求助?哪些是违规求助? 3358987
关于积分的说明 10399369
捐赠科研通 3076561
什么是DOI,文献DOI怎么找? 1689868
邀请新用户注册赠送积分活动 813339
科研通“疑难数据库(出版商)”最低求助积分说明 767608