A novel stacking-based predictor for accurate prediction of antimicrobial peptides

概率逻辑 计算机科学 机器学习 特征(语言学) 基线(sea) 人工智能 特征选择 抗菌肽 特征向量 支持向量机 鉴定(生物学) 数据挖掘 抗菌剂 生物 微生物学 哲学 语言学 植物 渔业
作者
Sameera Kanwal,Roha Arif,Saeed Ahmed,Muhammad Kabir
出处
期刊:Journal of Biomolecular Structure & Dynamics [Taylor & Francis]
卷期号:: 1-12 被引量:2
标识
DOI:10.1080/07391102.2024.2329298
摘要

Antimicrobial peptides (AMPs) are gaining acceptance and support as a chief antibiotic substitute since they boost human immunity. They retain a wide range of actions and have a low risk of developing resistance, which are critical properties to the pharmaceutical industry for drug discovery. Antibiotic sensitivity, however, is an issue that affects people all around the world and has the potential to one day lead to an epidemic. As cutting-edge therapeutic agents, AMPs are also expected to cure microbial infections. In order to produce tolerable drugs, it is crucial to understand the significance of the basic architecture of AMPs. Traditional laboratory methods are expensive and time-consuming for AMPs testing and detection. Currently, bioinformatics techniques are being successfully applied to the detection of AMPs. In this study, we have developed a novel STacking-based ensemble learning framework for AntiMicrobial Peptide (STAMP) prediction. First, we constructed 84 different baseline models by using 12 different feature encoding schemes and 7 popular machine learning algorithms. Second, these baseline models were trained and employed to create a new probabilistic feature vector. Finally, based on the feature selection strategy, we determined the optimal probabilistic feature vector, which was further utilized for the construction of our stacked model. Resultantly, the STAMP predictor achieved excellent performance during cross-validation with an accuracy and Matthew's correlation coefficient of 0.930 and 0.860, respectively. The corresponding metrics during the independent test were 0.710 and 0.464, respectively. Overall, STAMP achieved a more accurate and stable performance than the baseline models and significantly outperformed the existing predictors, demonstrating the effectiveness of our proposed hybrid framework. Furthermore, STAMP is expected to assist community-wide efforts in identifying AMPs and will contribute to the development of novel therapeutic methods and drug-design for immunity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cdercder应助科研通管家采纳,获得10
5秒前
余味应助科研通管家采纳,获得10
5秒前
科研通AI5应助123采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
cdercder应助科研通管家采纳,获得10
5秒前
典雅雅容完成签到,获得积分10
5秒前
黄迪迪完成签到 ,获得积分10
6秒前
能干觅夏完成签到 ,获得积分10
12秒前
BINBIN完成签到 ,获得积分10
15秒前
发文章鸭完成签到 ,获得积分10
17秒前
17秒前
SQL完成签到 ,获得积分10
18秒前
2463841186发布了新的文献求助30
20秒前
海阔天空完成签到,获得积分0
24秒前
27秒前
合适靖儿完成签到 ,获得积分10
29秒前
文章多多发布了新的文献求助10
32秒前
YangYue给YangYue的求助进行了留言
37秒前
文章多多完成签到,获得积分10
38秒前
勤劳小懒虫完成签到 ,获得积分10
38秒前
小二郎应助2463841186采纳,获得30
39秒前
和平港湾完成签到,获得积分10
44秒前
她的城完成签到,获得积分0
49秒前
allia完成签到 ,获得积分10
52秒前
54秒前
54秒前
张可完成签到 ,获得积分10
58秒前
LiangRen完成签到 ,获得积分10
1分钟前
鸿毛药玖发布了新的文献求助10
1分钟前
液晶屏99完成签到,获得积分10
1分钟前
hi_traffic完成签到,获得积分10
1分钟前
领导范儿应助鸿毛药玖采纳,获得10
1分钟前
小民完成签到 ,获得积分10
1分钟前
开心寄松完成签到,获得积分10
1分钟前
天真的羊青完成签到 ,获得积分10
1分钟前
淘宝叮咚完成签到,获得积分10
1分钟前
忒寒碜完成签到,获得积分10
1分钟前
坦率的枕头完成签到,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800980
求助须知:如何正确求助?哪些是违规求助? 3346569
关于积分的说明 10329587
捐赠科研通 3063068
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726