3D VOSNet: Segmentation of endoscopic images of the larynx with subsequent generation of indicators

喉镜检查 医学 绳索 分割 喉部 声带麻痹 语音识别 麻痹 插管 解剖 外科 计算机科学 人工智能
作者
I-Miao Chen,Pin-Yu Yeh,Ya-Chu Hsieh,Ting-Chi Chang,Samantha Shih,Wen-Fang Shen,Chiun-Li Chin
出处
期刊:Heliyon [Elsevier]
卷期号:9 (3): e14242-e14242 被引量:8
标识
DOI:10.1016/j.heliyon.2023.e14242
摘要

Video laryngoscope is available for visualizing the motion of vocal cords and aid in the assessment of analyzing the larynx-related lesion preliminarily. Laryngeal Electromyography (EMG) needs to be performed to diagnose the factors of vocal cord paralysis, which may cause patient feeling unwell. Thus, the problem is the lack of credible larynx indicators to evaluate larynx-related diseases in the department of otolaryngology. Therefore, this paper aims to propose a 3D VOSNet model, which has the characteristics of sequence segmentation to extract the time-series features in the video laryngoscope. The 3D VOSNet model can keep the time-series features of three images before and after of the specific image to achieve translation and occlusion invariance, which explicitly signifies that our model can segment and classify each item in the video of laryngoscopy not affected by extrinsic causes such as shaking or occlusion during laryngoscope. Numerical results revealed that the testing accuracy rates of the glottal, right vocal cord, and the left vocal cord are 89.91%, 94.63%, and 93.48%, respectively. Our proposed model can segment glottal and vocal cords from the sequence of laryngoscopy. Finally, using the proposed algorithm computes six larynx indicators, which are the area of the glottal, area of vocal cords, length of vocal cords, deviation of length of vocal cords, and symmetry of the vocal cords. In order to assist otolaryngologists in staying credible and objective when making decisions without any doubt during diagnosis and also explaining the clinical symptoms of the larynx such as vocal cord paralysis to patients after diagnosis, our proposed algorithm provides otolaryngologists with explainable indicators (X-indicators).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
丘比特应助阿欢采纳,获得10
刚刚
呐呐呐发布了新的文献求助10
刚刚
L2完成签到,获得积分20
刚刚
mumua发布了新的文献求助10
1秒前
小米发布了新的文献求助10
1秒前
完美世界应助YY-Bubble采纳,获得10
3秒前
灵泽完成签到,获得积分10
3秒前
复杂易形发布了新的文献求助10
3秒前
3秒前
科研通AI2S应助GRATE采纳,获得10
4秒前
啦啦啦啦完成签到 ,获得积分10
5秒前
SN完成签到 ,获得积分10
6秒前
6秒前
bkagyin应助lym54采纳,获得30
6秒前
Lixiuyuan完成签到 ,获得积分10
7秒前
hygge发布了新的文献求助10
9秒前
靳欣妍完成签到 ,获得积分10
10秒前
11秒前
想要发文章完成签到,获得积分10
12秒前
13秒前
14秒前
14秒前
盛夏完成签到,获得积分10
15秒前
帅气代云完成签到 ,获得积分10
16秒前
17秒前
ding应助gf采纳,获得10
18秒前
123完成签到 ,获得积分10
18秒前
盛夏发布了新的文献求助10
18秒前
sen完成签到,获得积分10
18秒前
阿欢发布了新的文献求助10
19秒前
坚强幼荷完成签到,获得积分10
20秒前
Siren发布了新的文献求助10
20秒前
hygge完成签到,获得积分10
21秒前
lsl完成签到 ,获得积分10
23秒前
chloe完成签到,获得积分20
25秒前
渡边彻发布了新的文献求助10
26秒前
594778089完成签到,获得积分20
28秒前
28秒前
hhhhh完成签到 ,获得积分10
30秒前
Liberal-5完成签到 ,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5495416
求助须知:如何正确求助?哪些是违规求助? 4593079
关于积分的说明 14439690
捐赠科研通 4525895
什么是DOI,文献DOI怎么找? 2479779
邀请新用户注册赠送积分活动 1464575
关于科研通互助平台的介绍 1437425