sCL-ST: Supervised Contrastive Learning With Semantic Transformations for Multiple Lead ECG Arrhythmia Classification

人工智能 计算机科学 机器学习 深度学习 卷积神经网络 杠杆(统计) 监督学习 初始化 人工神经网络 模式识别(心理学) 自然语言处理 程序设计语言
作者
Duc Le,Sang Truong,Patel Brijesh,Donald Adjeroh,Ngan Le
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (6): 2818-2828 被引量:23
标识
DOI:10.1109/jbhi.2023.3246241
摘要

The automatic classification of electrocardiogram (ECG) signals has played an important role in cardiovascular diseases diagnosis and prediction. With recent advancements in deep neural networks (DNNs), particularly Convolutional Neural Networks (CNNs), learning deep features automatically from the original data is becoming an effective and widespread approach in a variety of intelligent tasks including biomedical and health informatics. However, most of the existing approaches are trained on either 1D CNNs or 2D CNNs, and they suffer from the limitations of random phenomena (i.e. random initial weights). Furthermore, the ability to train such DNNs in a supervised manner in healthcare is often limited due to the scarcity of labeled training data. To address the problems of weight initialization and limited annotated data, in this work, we leverage recent self-supervised learning technique, namely, contrastive learning, and present supervised contrastive learning (sCL). Different from existing self-supervised contrastive learning approaches, which often generate false negatives because of random selection of negative anchors, our contrastive learning makes use of labeled data to pull the same class closer together and push different classes far apart to avoid potential false negatives. Furthermore, unlike other kinds of signals (e.g. speech, image, video), ECG signal is sensitive to changes, and inappropriate transformation could directly affect diagnosis results. To deal with this issue, we present two semantic transformations, i.e. semantic split-join and semantic weighted peaks noise smoothing. The proposed deep neural network sCL-ST with supervised contrastive learning and semantic transformations is trained as an end-to-end framework for the multi-label classification of 12-lead ECGs. Our sCL-ST network contains two sub-networks i.e. pre-text task and down-stream task. Our experimental results have been evaluated on 12-lead PhysioNet 2020 dataset and shown that our proposed network outperforms the state-of-the-art existing approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时光完成签到,获得积分10
1秒前
余生9979完成签到 ,获得积分10
1秒前
2秒前
2秒前
6秒前
悦耳的乐松完成签到,获得积分10
6秒前
黎明发布了新的文献求助10
8秒前
精气被实验吸干完成签到 ,获得积分10
10秒前
SYLH应助射天狼采纳,获得10
11秒前
15秒前
冯珂发布了新的文献求助10
18秒前
19秒前
21秒前
宋宋完成签到,获得积分10
22秒前
24秒前
SYLH应助飞飞飞采纳,获得10
25秒前
安白发布了新的文献求助10
26秒前
Clearly完成签到 ,获得积分10
26秒前
子名起难发布了新的文献求助10
29秒前
黎明发布了新的文献求助10
29秒前
年轻的路人完成签到,获得积分10
30秒前
30秒前
小懒猪完成签到,获得积分10
30秒前
感动书文完成签到,获得积分10
31秒前
31秒前
Dogged完成签到 ,获得积分10
32秒前
贷款做科研完成签到,获得积分10
32秒前
32秒前
Joshua发布了新的文献求助10
35秒前
小二郎应助科研通管家采纳,获得10
36秒前
SYLH应助科研通管家采纳,获得10
36秒前
36秒前
乐乐应助科研通管家采纳,获得10
36秒前
充电宝应助科研通管家采纳,获得10
36秒前
科研通AI5应助科研通管家采纳,获得10
36秒前
Akim应助科研通管家采纳,获得10
36秒前
我是老大应助科研通管家采纳,获得10
36秒前
36秒前
Joshua完成签到,获得积分10
45秒前
46秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
Cycles analytiques complexes I: théorèmes de préparation des cycles 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825640
求助须知:如何正确求助?哪些是违规求助? 3367823
关于积分的说明 10447914
捐赠科研通 3087251
什么是DOI,文献DOI怎么找? 1698546
邀请新用户注册赠送积分活动 816807
科研通“疑难数据库(出版商)”最低求助积分说明 769973