医学
损伤严重程度评分
修正创伤评分
急诊医学
逻辑回归
布里氏评分
前瞻性队列研究
严重创伤
外科
伤害预防
毒物控制
内科学
计算机科学
人工智能
作者
Eric O. Yeates,Jeffry Nahmias,Viktor Gabriel,Xi Luo,Babatunde Ogunnaike,M. Iqbal Ahmed,Emily Melikman,Tiffany S. Moon,Thomas Shoultz,Anne Feeler,Roman Dudaryk,Jose R. Navas‐Blanco,Georgia Vasileiou,D. Dante Yeh,Kazuhide Matsushima,Matthew J. Forestiere,Tiffany Lian,Oscar Hernandez Dominguez,Joni Ricks‐Oddie,Catherine M. Kuza
标识
DOI:10.1213/ane.0000000000006802
摘要
Trauma outcome prediction models have traditionally relied upon patient injury and physiologic data (eg, Trauma and Injury Severity Score [TRISS]) without accounting for comorbidities. We sought to prospectively evaluate the role of the American Society of Anesthesiologists physical status (ASA-PS) score and the National Surgical Quality Improvement Program Surgical Risk-Calculator (NSQIP-SRC), which are measurements of comorbidities, in the prediction of trauma outcomes, hypothesizing that they will improve the predictive ability for mortality, hospital length of stay (LOS), and complications compared to TRISS alone in trauma patients undergoing surgery within 24 hours.
科研通智能强力驱动
Strongly Powered by AbleSci AI